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The two-dimensional irregular packing problem is a geometrical problem encountered in

the clothing industry and in many common life situations. In this problem, a hetero-

geneous set of polygonal pieces must be placed into a rectangular container so that no

polygon overlaps with any others. We consider two variants: the single knapsack prob-

lem, in which the container has a fixed size, and the open dimension problem, where the

container has a variable length that must be minimized.

In this thesis, we propose a sequential approach to solve the irregular packing problem.

First, we adapt a few search heuristics widely used in discrete constraint satisfaction

problems. Second, we apply advanced filtering techniques to quickly eliminate incon-

sistent layouts. Both heuristics and filtering techniques are based on the analysis of

the placement domain of each piece. With this approach, we can find packing layouts

that are acceptable for casual applications relatively fast, but it requires a considerable

amount of additional time and memory to obtain layouts of better quality, especially

when pieces with complex shapes are involved.
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Chapter 1

Introduction

1.1 Problem overview

The irregular packing problem, sometimes called nesting or cutting problem, is a geo-

metrical problem in which pieces of different shapes must be placed inside a container

so that no pieces overlap any others. In this thesis, we consider the two-dimensional

irregular packing problem with polygonal pieces and a rectangular container. Pieces

may be non convex and contain holes. In addition, the pieces can be rotated, but only

a finite set of orientations is allowed for each piece. Piece mirroring is not considered in

this thesis, but can be handled in the same way as piece orientations. We deal with two

variants of the problem, as classified by Wäscher et al. [1]: the Single Knapsack Problem

and the Open Dimension Problem.

The original Single Knapsack Problem (SKP) is an optimization problem in which as

many pieces as possible must be placed inside a single container of fixed size. In this

thesis, we use a slightly different definition of the SKP where all the pieces must be

placed so that the problem is considered solved. Our motivations are that we work with

puzzle problems that require all the pieces to be placed, and that it makes the definition

of the SKP closer to the definition of the Open Dimensional Problem. Nevertheless, for

problem instances that are too hard to solve, it is useful to count the number of pieces

placed in the container as a measurement of the progression of the search.

1
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In the Open Dimension Problem (ODP), the container is a rectangle with a fixed width

and a variable length. The objective is to pack the pieces in the container while min-

imizing its length. Most of the benchmarks available to test packing algorithms are

ODPs.

1.2 Applications

The Single Knapsack Problem is encountered in everyday life, for instance when packing

luggage in a travel case or a car trunk. However, in most cases, a three-dimensional rep-

resentation and physics considerations are needed in order to find convincing solutions.

Packing puzzles are more accurately represented by SKPs, and many instances are in

two dimensions. Specialized puzzle solvers use combinatorial approaches that are more

efficient than generic packing algorithms. Nevertheless, packing and dissection puzzles

are good benchmarks for research on SKP because we know whether a solution exists

or not for a given container length. In addition, the solutions to dissection puzzles are

compact, and filtering techniques are effective on problems with strong constraints. Fig-

ure 1.1 shows a possible solution to the well-known Tangram dissection puzzle with a

square container.

Figure 1.1: Tangram puzzle as a Single Knapsack Problem

The Open Dimension Problem models cutting problems present in the metal and cloth

industry, where specific patterns must be cut from a material sheet. The unused parts

of the sheet are often too small to be reused and become waste. Therefore, minimizing

the length of the sheet used for cutting minimizes the cost of the production. The Shirts

and Trousers data sets from the ESICUP benchmarks [2] contain such cloth patterns.
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1.3 Problem definition

In this section, we give a formal definition to the Single Knapsack and the Open Dimen-

sion Problems. We can formulate the SKP as a Constraint Satisfaction Problem (CSP)

and the ODP as a Constraint Optimization Problem (COP). We start by defining some

problem data common to both variants.

1.3.1 Problem data

Pieces

The problem pieces are noted (P1, . . . , Pn). The geometry of a piece is a polygon with

holes. It is a closed set characterized by a polygonal exterior boundary and zero, one or

more polygonal holes. For each piece P , a reference point Pref is defined as the point

that matches the origin of the plan O when P is not translated. When P is translated

by u,
−−−→
OPref = u. Pref may or may not belong to the piece geometry. See Figure 1.2

for an example of pieces with their reference points. By abuse of notation, we use P

to indicate at the same time the problem data, the geometry and, when the context is

clear, the translated and rotated geometry of piece P .

Bref

Aref

A B

Figure 1.2: Two pieces A and B and their reference points

Although irregular packing deals with a heterogeneous set of pieces, it is common that

several pieces share the same geometry. In this thesis, we consider each piece as a

different entity. In practice, geometrical computations should be shared between pieces

that have the same shape.

Pieces are subject to a placement, a combination of a translation and a rotation, noted

p = (u, θ). For each piece P , a finite set of orientations O(P ) is allowed. Pieces are

always rotated around their reference points.
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Container

The container is a rectangle of width W , length L, and is noted C(W,L). In our model,

the width is the size along the Y axis and the length is the size along the X axis. The

edges of the container are aligned with the X and Y axes and its bottom-left corner is

always at the origin.

1.3.2 Constraint problem formulation

Constraint satisfaction problems and constraint optimization problems have the follow-

ing common characteristics:

• A finite set of variables is defined.

• A value can be assigned to each variable, and this value must live in a domain

specific to the variable.

• An assignment is a tuple of variable ← value associations. It is complete if all

variables are associated to a value, otherwise it is partial. The term assignment is

sometimes used to indicate a single variable ← value association.

• Constraints impose a condition on an assignment. Unary constraints give a condi-

tion on the value assigned to one variable, while binary constraints give a condition

on the relationship between the values assigned to two variables.

• A model is a complete assignment that satisfies all the problem constraints.

The objective of a CSP is to find any model, while the objective of a COP is to find

a model that minimizes some cost function of the assignment. Now that we have in-

troduced the characteristics of a CSP and a COP, we can define them for the irregular

packing problem.

Single Knapsack Problem

The problem is defined as a CSP with the following characteristics:
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• Variables: pieces 〈P1, . . . , Pn〉

By abuse of notation we note P1, . . . , Pk an arbitrary sequence of pieces, which is

not necessarily in the same order as in the definition of the variables.

• Values: placements 〈p1, . . . , pn〉 where pi = (ui, θi) is the placement of piece Pi

The placement domain of a piece P is noted D(P ). D(P ) ⊆ R2 × O(P ) and it

represents, for each orientation allowed for P , the set of possible translations of P ,

which is also the set of possible positions of Pref .

To simplify notations, we define the placement function pl as follows:

∀p = (u, θ) ∈ R2 ×O(P ), plp(P ) = tu(rθ(P ))

where tu is the translation of vector u and rθ the rotation of angle θ

• Unary constraints: all the pieces must be inside the container of fixed dimensions,

i.e.

∀i ∈ [1..n], plpi(Pi) ⊆ C(W,L)

• Binary constraints: two different pieces must not overlap, i.e.

∀i, j ∈ [1..n], i 6= j, int(plpi(Pi)) ∩ int(plpj (Pj)) = ∅

where int(X) is the interior of the set X.

Open Dimension Problem

The ODP is a COP with the same variables, values, domains and constraints as above.

However, the length L is variable, so the unary constraint depends on the value of L

considered at a given state in the search. In addition, a last characteristic is added:

• Cost: L must be minimized.
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Additional notations

We use the term layout to designate a partial or a complete assignment of placements

for the pieces. By abuse of language, we also designate the union of the pieces placed in

the container based on a given assignment as a layout.

Since the placement domain of a piece P contains a set of possible translations for each

orientation of P , it cannot be directly used in geometrical operations. For this reason,

we define the translation domain Dθ(P ) as the set of possible translations of P for a

fixed orientation θ:

Dθ(P ) = {u ∈ R2, (u, θ) ∈ D(P )}

For the Open Dimension Problem, the domains and translation domains are always

considered for a given container length L.

We call pieces that are not placed in the current layout remaining pieces. In order to

complete a layout, one must place all the remaining pieces.

1.4 Literature review

In this section we survey a few approaches to the 2D irregular packing problem. Search

methods can be classified in two main groups: sequential searches and local searches.

In a sequential search, the initial state of the search is an empty layout. Pieces are then

placed one by one until the layout is complete. At each step, pieces must not overlap,

and most algorithms are allowed to backtrack. Bennell and Song [3] use a beam search

where the global evaluation of a placement is based on a single-pass layout completion.

The method is cheap in computation time and memory usage, and can be applied to

both the Single Knapsack and the Open Dimension Problems.

In a local search approach, the initial state is a complete layout where some pieces may

overlap with each others. The length of the container is alternatively increased to make

it easier to find a solution, and decreased to force the algorithm to find better solutions.

At each step, pieces are moved and swapped until they do not overlap anymore, or

until the amount of overlap is minimized. Sato et al. [4] use a two-level algorithm for

the ODP, applying simulated annealing to the length of the container while replacing
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the pieces to exactly fitting positions. Imamichi et al. [5] analyze the way two pieces

overlap to find the shortest translation required to separate them. Elkeran [6] creates,

in a preprocessing step, clusters of two pieces if their shapes match well, then combines

a Cuckoo search and a guided local search to gradually improve the solutions.

Physics-based methods can be used in either sequential or local searches. Wauters et

al. [7] present a shaking algorithm, a physics-based dynamic local search, for packing

problems with rectangular pieces.

Hybrid methods also exist: a sequential search is used to find a layout with little or no

overlap, on top of which a local search is applied in order to ensure that the overlap

remains low or null while decreasing the container length.



Chapter 2

Geometric tools

In this chapter, we introduce a few common geometric tools and models used in research

on packing: the no-fit polygon, the inner-fit polygon and the collision-free region. Those

tools allow us to determine whether problem constraints are violated and to place pieces

so that the constraints are satisfied.

2.1 Collision detection methods overview

In order to determine whether there is an overlap between two pieces and to measure this

overlap, a range of methods are available. Static collision detection methods measure

overlap for a given set of objects in a fixed position, whereas dynamic collision detection

can resolve collisions when objects are moving in real-time. Dynamic collision detection

is used in physics simulation and therefore useful in dynamic searches such as shaking.

However, our approach being based on a sequential and static search, only static collision

detection is used in this paper.

To determine when an overlap occurs, the most common tools are direct trigonometrical

computations, phi-functions and no-fit polygons. A direct computation verifies the in-

tersection between each edge of each polygon and is expensive. A phi-function measures

the equivalent of a signed distance between two geometrical objects, the distance being

negative when the objects are overlapping. Finally, the no-fit polygon provides the set

of positions for which two polygons are overlapping. Computing a no-fit polygon is ex-

pensive for polygons with complex shapes, but we choose this method as it is the only

8
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one that gives us directly the set of feasible placements for a piece. Inner-fit polygons

and collision-free regions are related notions, as explained in the following sections.

2.2 No-fit polygon

The no-fit polygon (NFP) of two geometrical objects A and B with given orientations

is the set of relative positions
−−−−−→
ArefBref for which A and B are overlapping. Because

touching positions are excluded, the NFP is an open set and its boundary is the set of

touching positions.

Since NFP(A,B) consists of positions of B relatively to A, we can consider that A is

fixed. When computing an NFP it is convenient to assume that piece A is not translated,

i.e. its reference point is at the origin, and that piece B is moving. In addition, we assume

that A and B have been rotated and we omit the rotation parameter. The NFP of A

and B can then be expressed as:

NFP(A,B) = {u ∈ R2, int(A) ∩ tu(int(B)) 6= ∅} (2.1)

The no-fit polygon of two pieces is represented on Figure 2.1. The boundary is shown

as a dotted line and the interior is shown in transparent red. The white square inside

the hole of piece A represents an isolated point excluded from the NFP, a position in

which B exactly fits.

Bref

Aref

A B NFP(A,B)

Figure 2.1: No-fit polygon of A and B, obtained by letting B orbit around A

The polygons considered in an NFP have an antisymmetric relation: a translation u of

B relatively to A corresponds to a translation −u of A relatively to B. Hence, for given

rotations:

NFP(A,B) = −NFP(B,A) (2.2)
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Since the NFP is based on relative positions, if static piece A is translated by a vector

u, the NFP is translated by the same vector:

NFP(tu(A), B) = tu(NFP(A,B)) (2.3)

This expression is especially useful when computing the NFP between a piece A already

placed in the container and a new piece to place B.

When computing the NFP for the same pieces with different piece orientations, it is

useful to use orientation parameters:

NFP(A,B, θA, θB) = NFP(rθA(A), rθB (B)) (2.4)

Again, it is more convenient to work with one piece with a fixed orientation. By con-

vention, we assume that A is not rotated (θA = 0) and B has an orientation θB = θ.

Hence we define NFP(A,B, θ) = NFP(A,B, 0, θ). Unlike with translations, the NFP is

not preserved if both pieces are rotated by the same angle. Instead, we use the formula:

NFP(A,B, θA, θB) = rθA(NFP(A,B, θB − θA)) (2.5)

When it is clear from the context what the orientations of A and B are, or when we

describe a generic property that is valid for any orientations of A and B, we simply write

NFP(A,B).

The boundary of the NFP of A and B, ∂NFP(A,B), is the set of relative positions for

which A and B are touching, i.e. their intersection is not empty and is included in their

boundaries. Its exterior, NFP(A,B)e = NFP(A,B)
c
, is the set of relative positions for

which A and B are separated i.e. they do not intersect at all.

To sum up, for a translation t of B relatively to A:

• A and B are overlapping iff t ∈ NFP(A,B)

• A and B are touching iff t ∈ ∂NFP(A,B)

• A and B are separated iff t ∈ NFP(A,B)e

Therefore, once the NFP of two pieces has been computed, checking for overlap is reduced

to a point-in-polygon test. In practice, we do not check for overlap after placing a piece;
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instead, we place each new piece on the boundary or in the exterior of its NFP with

other pieces, so that we ensure that there is no overlap at first.

There are different ways to compute an NFP. Stoyan and Ponomarenko [8] observe that

an NFP is a Minkowski sum where one object is reversed:

NFP(A,B) = int(A)⊕−int(B) (2.6)

where X ⊕ Y = {x+ y, x ∈ X, y ∈ Y }.

The Minkowski sum can be computed very easily for convex polygons, using the con-

structive algorithm of Cunninghame-Green [9]. In this algorithm, edges of A and −B

are concatenated by increasing angle of orientation, and the resulting polygon is the

Minkowski sum. For non-convex polygons, we can apply a convex decomposition, then

compute the NFP between each pair of convex parts obtained, and finally recompose

the NFP between the non-convex polygons. This is possible by using the following

decomposition formula of an NFP.

Let A and B be two polygons composed of a finite number of closed polygons: A = A1 ∪ · · · ∪Ap

B = B1 ∪ · · · ∪Bq

Then the NFP of A and B can be reconstructed as:

NFP(A,B) =
⋃
i=1..p
j=1..q

NFP(Ai, Bj) (2.7)

Indeed, A and B are overlapping iff any of their respective parts are overlapping with

each other. Note that set interiors are used in the definition of the NFP, so the proof is

not immediate.

Convex decomposition is expensive (O(n4) for n vertices, as stated by Hert [10]), and

polygon triangulation is cheaper (O(nr2) for r non-convex vertices) but creates more

parts, hence requires more union operations to reconstruct the NFP. Besides, decom-

posing a polygon with holes is NP-hard except for approximate decompositions, Lien
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and Amato [11]. Therefore, for complex non-convex polygons, it may be advantageous

to apply other methods to compute NFPs.

One technique is to compute the convolution of two polygons by concatenating their

edges in a specific order. The method is similar to Cunninghame-Green, but the resulting

polygon may have self-intersections due to windings around some points, all windings

being clockwise. Points with a non-zero winding number inside the convoluted geometry

are the points of the NFP. Wein [12] explains the base of the algorithm in the user

manual of the Computational Geometry Algorithms Library (CGAL), in the section 2D

Minkowski Sums. Behar and Jyh-Ming Lien [13] propose an optimized approach that

spare the computation of convoluted edges not used in the final shape.

Burke et al. [14] describes another method to compute NFP(A,B) called orbital sliding.

The method consists in two parts. First, B is set in contact with A from the exterior

and orbits around A. We track the positions occupied by Bref to trace the exterior

boundary of the NFP. Second, B is warped in holes of A where it can fit, or, if B is

bigger, warped so that A is inside one of its holes. Then, the orbiting process resumes

to trace the remaining parts of the boundary of the NFP. Eventually the boundary is

completed and the NFP is deduced. See Figure 2.2 for a visualization of the process.

warp on 
exterior

slide

slide back and 
close exterior

warp in hole and 
remove point

NFP(A,B)

Figure 2.2: No-fit polygon construction with Burke’s orbital sliding
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For all three methods, extra caution must be taken when dealing with geometries where

B has exact fitting or sliding positions inside A. An exact fit is defined as a position

from which a piece cannot move at all, and an exact slide as a position from which

a piece can only move in a finite number of directions. Such positions correspond to

degenerated points or edges that are excluded from the geometry. Figure 2.3 shows one

exact fit and one exact slide position.

exact slide exact fit

NFP(A,B)

Figure 2.3: Exact fit and slide positions in a no-fit polygon

Degenerated cases also appear in the geometrical sets presented in the following sections.

2.3 Inner-fit polygon

The inner-fit polygon (IFP) is the reversed notion of the NFP. The IFP of a contained

object A for a container C is the set of positions of Aref for which A lies inside C,

including when A touches the boundary of C. Therefore, an IFP is a closed set. Since

the container is always fixed in our problem, positions and relative positions of Aref are

the same, and they are equal to the translations of A from the origin. Note that there

is no symmetric nor antisymmetric relation between the object parameters of an IFP.

We will always write the container parameter first.

IFP(C,A) = {u ∈ R2, tu(A) ⊆ C} (2.8)

Again, we can write IFP(C,A, θ) = IFP(C, rθ(A)) but we omit the orientation param-

eter when the context is clear.

The IFP is used to verify the unary constraints of the problem. In addition, the IFP

provides the set of valid positions of a piece when the layout is empty, making it an

essential part of the computation of the placement domains.
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IFP(C,B)

(a) Inner-fit polygon of B
in C: a rectangle

IFP(C,A)
(b) Inner-fit polygon of A

in a modified C: a line

Figure 2.4: Inner-fit polygon as inner-fit rectangles

For a translation t of A:

• A is strictly contained in C iff t ∈ int(IFP(C,A))

• A is touching C from inside iff t ∈ ∂IFP(C,A)

• A is protruding from C iff t ∈ IFP(C,A)e

As we only work with rectangular containers, our IFPs are always rectangles or de-

generated rectangles. Such an IFP is sometimes called inner-fit rectangle (IFR) in the

literature. IFRs are very cheap to compute. To compute IFRs we use the concept of

axis-aligned bounding box or simply bounding box of a set X, which is the smallest axis-

aligned rectangle that contains X. Depending on the size of the bounding box of a piece

A compared to a rectangular container C, IFP(C,A) may be:

• the empty set

• a point (only one position allowed)

• a line (the polygon can only slide in one direction)

• a rectangle, smaller than the container

In general, an IFP may present degenerated edges or points, included in the geometry.

IFRs are only degenerated in the case of a point or a line. Two different cases are

illustrated in Figure 2.4.

2.4 Collision-free region

The collision-free region (CFR) of a piece P , with a given orientation, inside a container

C where other pieces P1, . . . , Pk have been placed, is the set of translations of P for
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NFP(A,B)

IFP(C,B)

(a) IFP(C,B) and
NFP(A,B) superposed

CFR(C,(A),B)

(b) CFR(C, (A), B) with
degenerated edges and

vertices

Figure 2.5: Collision-free region computation

which P is inside the container and does not overlap with other pieces:

CFR(C, (P1, . . . , Pk), P ) = {u ∈ R2, tu(P ) ⊆ C \
⋃
i=1..k

int(Pi)} (2.9)

P is used instead of int(P ) in the right-hand side expression because

int(P ) ∩ int(Pi) = ∅ ⇔ P ∩ int(Pi) = ∅

A piece placed in its collision-free region satisfies both the unary and binary constraints

of the problem. Since the IFP represents unary constraints and the NFP represents

binary constraints, we can reformulate the expression:

CFR(C, (P1, . . . , Pk), P ) = IFP(C,P ) \
⋃
i=1..k

NFP(Pi, P ) (2.10)

We define CFR(C, (P1, . . . , Pk), P, θ) = CFR(C, (P1, . . . , Pk), rθ(P )). When the orienta-

tion of P is clear, we write CFR(C, (P1, . . . , Pk), P ), and when the layout is given by

the context, we write CFR(P, θ) or simply CFR(P ).

Like IFPs, a CFR can present degenerated edges and vertices including in its geometry.

Sato et al. [4] note that even if the IFP is a normal rectangle and all the NFPs are

non-degenerated, after the union and difference operations in equation 2.10, the CFR

may be degenerated. An example of CFR is shown on Figure 2.5.

By computing the IFP of each piece with the problem container and the NFP of each
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couple of piece, we can compute CFR of any piece at any step of the search, at the cost

of non-manifold union and difference operations. In section 3.5.1 Domain revision, we

reformulate an incremental expression for the CFR.

Once CFRs are known, we can define a piece translation domain as the CFR of this

piece to ensure that its future placement will satisfy all the problem constraints:

Dθ(P ) = CFR(P, θ)

Implementation note 1. In order to deal with the potential degenerated parts in NFPs

and CFRs, we designed a special class of polygons detailed in section 4.3 Non-manifold

geometry.



Chapter 3

Hybrid graph-constrained search

3.1 Process overview

The approach we propose is a sequential search as defined in section 1.4 Literature

review. Based on previous research on the definition of discrete constraint satisfaction

problems as graph search problems, we design a framework that combines the charac-

teristics of a graph search and a classical constrained search with continuous domains.

We fill the components of the framework with data and methods specific to the irreg-

ular packing problem. Our approach is similar to other methods using graph-specific

techniques such as the beam search of Bennell and Song [3], but we put more emphasis

on filtering and heuristics that are specific to constraint problems.

The graph search components allow a nonlinear search over the space of packing layouts,

while the constrained search components allow us to heavily filter the layouts and to

apply heuristics based on the placement domains of each piece. Below, we describe the

global process and the components used in our approach.

During the search, we build a graph where each node represents a layout. Following

the terminology of graph and constrained search, we sometimes use the terms state and

assignment to designate a layout contained in a node. A node also contains useful in-

formation for heuristics and filtering such as the last piece that has been placed in the

layout, where it has been placed, the domains of the remaining pieces (see section 4.4

Incremental cache) and derived attributes to easily access the cost and the remaining

pieces at the current state. Unexplored nodes are stored in a fringe and a new node

17
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is popped at each iteration (see 3.4.1 Fringe). Search heuristics give priority to certain

kind of layouts (see 3.4.2 Heuristics). A popped node is filtered, and if it is not glob-

ally consistent it is dropped for CSPs, or the cost limit is increased for COPs (see 3.5

Filtering). If the node is not dropped, it is expanded to produce new nodes representing

successor layouts. A successor layout is obtaining by placing a new piece on the layout.

When expanding a node, all the remaining pieces are considered. For each of them, a

value picker selects a finite set of placements among the placement domain and those

placements are used to generate the successor layouts (see 3.3 Placement picker).

In our approach, we do not move or remove a piece to obtain a successor layout, so local

searches are not possible. Furthermore, unlike other approaches, we do not choose which

piece to place first, then where to place this piece, but generate a range of successors

with different placements for each remaining piece at once. Then we leave the choice of

the next piece and its placement to the heuristics.

We describe the high-level algorithms used for the Single Knapsack and the Open Di-

mension Problems in Algorithm 1 and Algorithm 2. Since our algorithms are generic,

they can be applied to any Constraint Satisfaction Problem and Constraint Optimiza-

tion Problem respectively. Lines specific to a CSP are written in blue, and lines specific

to a COP are written in bronze. In addition to the problem, we pass a strategy parameter

that contains our module settings for the search: picker, heuristics and filter. The

modules are described in the following sections. Note that we added a precomputation

step to obtain all the NFPs before the search begins. The precomputation is explained

in the next section.

The iteration process is similar to a normal graph search, except that we apply filtering

after popping a node, and that in order to generate successors we must pick specific

values in the domain of each unassigned variable. For the COP, we must also manage

the dynamic length of the container, represented by cost limit.

3.2 Precomputation

Since NFPs only depend on the shape of the pieces and their computation is expen-

sive (see 5.2.1 Precomputation), we precompute the NFP between each pair of pieces

NFP(Pi, Pj), avoiding redundant computations when several pieces have the same shape.
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Algorithm 1 Constraint satisfaction problem graph search

1: function csp-graph-search(problem, strategy)
2: precompute NFPs
3: create fringe based on strategy.heuristics
4: create node with empty layout for problem and push it to fringe
5: while fringe is not empty do
6: pop node from fringe . break if max iterations/time reached
7: if node is model then
8: return node
9: apply strategy.filter to node

10: if node is proven not globally consistent then
11: continue
12: successors ← expand(node,strategy.picker) . pick values here
13: push successors to fringe

14: return null

Algorithm 2 Constraint optimization problem graph search

1: function cop-graph-search(problem, strategy)
2: precompute NFPs
3: create fringe based on strategy.heuristics
4: create node with empty layout for problem and push it to fringe
5: best model ← null
6: while fringe is not empty do
7: pop node from fringe . break if max iterations/time reached
8: if node is model then
9: if node.cost < best cost then

10: best model ← node
11: best cost ← node.cost
12: continue
13: apply strategy.filter to node
14: if node is proven not globally consistent then
15: extend cost limit
16: if node.cost ≥ best cost then
17: continue . ignore nodes that cannot improve the solution

18: successors ← expand(node) . pick values here
19: push successors to fringe

20: return best model
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In addition, we use the antisymmetry (2.2) and the relative rotation (2.5) formulas to

optimize the computations.

3.3 Placement picker

Placement domains are continuous and a graph search is discrete, so we need to discretize

the domains. We use an approach called value picking, in which we only pick a finite

sample of domain values to generate successor layouts.

Remark 3.1. Another approach for discretization is called domain splitting and consists

in partitioning the domain space so that each node represents a range of possible lay-

outs. The process comes from discrete constraint problems where splitting a finite set is

relatively easy, and its application to continuous constrained optimization is explained

by Pedamallu et al. [15]. However, it is more difficult to use inference and filtering with

domain splitting, because no specific placement is chosen.

To generate the successors of a node n, for each remaining piece P and for each orien-

tation θ ∈ O(P ), we pick a finite set of positions u from Dθ(P ) the translation domain

associated to this orientation. Then, for each placement p = (u, θ) of P , we create a

clone (deep copy) of n and we add P at p in the cloned layout. This process corresponds

the expand function in Algorithms 1 and 2, and takes a picker function as parameter.

We describe it in Algorithm 3.

Algorithm 3 Placement picking

1: function expand(node, picker)
2: successors ← empty list
3: for P in node.remaining pieces do
4: for θ in O(P ) do
5: placements ← picker(P, θ)
6: for p in placements do
7: s ← copy(node)
8: assign p to P in s
9: append s to successors

10: return successors

Some placement picking strategies are exclusively based on the shape of the translation

domain, while others choose positions that maximize some evaluation criterion. Most

strategies presented in the literature pick points on the boundary of the translation
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(a) Convex vertex picker (b) Regular vertex picker

Figure 3.1: Placement pickers based on domain shape.
A cross indicates a picked position.

domain, because the boundary represents positions where P touches other pieces and/or

the container, which often contributes to a better packing.

Placement picker based on domain shape

For picking based on the shape of the domain, we use:

• vertex picking : we pick all the vertices of the translation domain. A variant,

suggested by Sato et al. [4], consists in picking only convex vertices. This is

because concave vertices correspond to positions where P touches other pieces at

only one point, which is often undesirable. The disadvantages of vertex picking are

that irregular domain shapes with many vertices produce many similar successors,

and that positions in the middle of an edge of the domain are ignored. See Figure

3.1a for an illustration of a few positions.

• regular picking : we pick evenly spaced points on the boundary of the translation

domain. We can either include all domain vertices or skip some of them in the

parts of the boundary that are dense in vertices. In our implementation of regular

picking, we pick all the vertices plus evenly spaced points on each edge of the

translation domain. The regular picker is effective on problems where some pieces

have long edges, but tends generates many similar successor layouts. See Figure

3.1b for an example.
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Placement picker based on evaluation optimization

Strategies that maximize an evaluation criterion pick a few positions that are likely to

result in a good packing. As they produce few successors for the search, the computations

are lighter, but the picker may miss other potentially interesting positions.

A few strategies based on an evaluation criterion are listed below. We denote P the

next piece to place, P1, . . . , Pk the pieces already placed in the layout and F =
⋃

i=1..k

Pi

the geometry of the current layout.

• minimum layout bounding box (Min-BB): we pick positions of P for which the

bounding box of the successor layout has the smallest area. To find these positions,

we let P orbit around F while staying inside the container, following the path

∂NFP(F, P ) ∩ IFP(C,P ). We record a key position each time the bounding box

of P starts or stops affecting the bounding box of F ∪ P in one direction. By

studying the quadratic expression of the area of the bounding box of F ∪ P , we

observe that the positions that minimize it are always among the key positions.

This picker tends to make the packing have a rectangular shape.

• maximum bounding box overlap: we pick the positions that maximize the area of

the intersection between the bounding box of P and the union of the bounding

boxes of P1, . . . , Pk. We define the same key positions as for the minimum layout

bounding box picker above. The bounding box overlap area is either maximized

at a key position, or between two key positions, in which case we obtain the

maximizing positions by studying the quadratic polynomial expression of the area.

This picker tends to make the bounding box of pieces fit inside each other.

• dominant point (DP): we pick the position of P that enters the deepest inside

the convex hull of NFP(F, P ). Elkeran [6] describes the method of the dominant

point, but applies it in a preprocessing phase to create clusters of two pieces. The

dominant point picker has a similar effect to the maximum bounding box overlap

picker, but is based on the movement of P around F rather than its shape, and is

not axis-dependent.
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(a) Maximum bounding
box overlap (piece shown
in intermediate position)

(b) Dominant point

Figure 3.2: Placement pickers based on domain shape.
A cross indicates a picked position.

3.4 Fringe and heuristics

3.4.1 Fringe

All the fringes we use are based on the data structure of a priority queue. In a classic

priority queue, all the items are automatically sorted according to a priority passed with

the pushed items. In our fringe, the priority is automatically computed by an evaluation

function: the search heuristics. When a layout node is pushed to the priority queue,

its heuristic is immediately calculated and the node is sent to the right position in the

queue. The nodes with the lowest heuristics are considered as the best nodes, and placed

at the head of the queue.

Fringe type

We designed a few variants of the priority queue and used them as fringes. The variants

are listed below, with parameters written between square brackets.

• normal fringe: the capacity of the fringe is unlimited and the node with the lowest

heuristic is popped. Layouts considered the best are always explored first.

• bounded fringe [limit]: the capacity of the fringe is limited to limit. If the

maximum capacity is reached, the worst layouts are dropped first. It is useful to

reduce memory footprint and heuristic computation time; but if limit is set too

low, interesting layouts may be lost.
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• random fringe [random span]: the node returned by a pop is randomly chosen

among the best random span nodes. This fringe allows us to try layouts with

heuristics equal or slightly higher than the heuristic of the best node, and reduce

the impact of small variations in heuristic values.

Number of fringes

For a given fringe type, we choose how many fringes to use. In most cases, only one

fringe is enough. When a search is trapped in a branch with layouts of low quality, using

multiple fringes allows to increase the diversity of the layouts explored.

The fringes are handled in the following way:

1. single fringe: all the nodes are pushed to and popped from the same fringe, so all

layouts are compared at the same time. If the fringe is empty at some point, the

search stops.

2. multiple fringes [K, M]: K fringes of the same type are managed in parallel. Each

fringe initially contains a different set of nodes prepared for a multi-start search.

Nodes are popped from each of the fringes in turn, and successors are pushed on

the same fringe as their parent. In addition, if one of the fringes is empty at some

point in the search, it will receive all the but the best M nodes of another non-empty

fringe. This ensures that all the K fringes are used at any time during the search.

3.4.2 Heuristics

Search heuristics allow us to to explore a range of layouts efficiently by providing

problem-specific information on what we consider a good layout is. Unlike picking,

heuristics do not restrict the set of placements to try for each piece, so that layouts

scored with an average or low quality will eventually be explored within the maximum

number of iterations allowed for the search. Evaluations used in placement pickers can

also be used for search heuristics. Furthermore, it is easier to score a given layout than

to find a placement that maximizes that score, hence more complex evaluations can be

used for heuristics than for placement picking.

We use sub-heuristics that we categorize in three groups:



Chapter 3. Hybrid graph-constrained search 25

• Depth-based heuristics: heuristics that depend on the depth in the search tree,

i.e. the number of assigned variables. Although we call this a group, we use only

one heuristic of this kind: the depth-first heuristic, that gives a higher priority to

nodes with more assignments. This is because in constrained search, the path taken

to assign all the variables does not matter; instead, we want to find a complete

assignment as fast as possible.

• Variable-based heuristics: heuristics that depend on the variable assigned in the

node, but not on its value. In the packing problem, it helps us defining which

pieces should be placed first. In addition, it can return different evaluations for

different orientations of the same piece.

• Value-based heuristics: heuristics that depend on the value assigned in this node.

Since the value alone is often meaningless, such heuristics actually depend on both

the variable and the value assigned, as well as on the state resulting from the

assignment.

All those sub-heuristics can be combined to form a complete heuristic. In this thesis,

we combine them by priority order, using the order depth → variable → value and

sometimes depth → value → variable or simply depth → value.

Since there is only one heuristic in the first group, we detail variable-based and value-

based heuristics in the following sections.

Variable-based heuristics

In most sequential searches from the literature, a new piece is chosen at each assignment

step, then a placement is chosen for this piece. Using variable-based heuristics allows

us to define which piece to place next, but since all the remaining pieces are ordered by

priority, if placing the piece with the best heuristic first does not work, the search will

continue, trying other pieces first.

The main variable-based heuristics we use are:

• Bigger first (Big): we place the biggest pieces in priority. The size of a piece can be

defined by measurements such as its area, its bounding box area or its diameter.
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Bigger first is the most common method used in the literature to choose the

next piece to place, and comes from the idea that big pieces tend to have fewer

available positions, making it easier to try them all. In addition, big pieces restrict

the domain of remaining pieces faster, so that if a search branch has to fail, it fails

early.

• Minimum Remaining Values (MRV): the Minimum Remaining Values evaluation

is widely used in discrete constrained search problems and returns the number of

remaining values in the domain of a variable. Since our domains are continuous, we

cannot count how many values they have. Instead, we adapted our MRV heuristic

to return the size of the domain of a variable, defined as the tuple (area of closed

interior, length of boundary lines, number of degenerated vertices). Tuples are

compared in order, so the lines and vertices are compared only if two pieces have

the same domain area. This often happens because the domains contain only

degenerated parts. At the beginning of the search, MRV behaves like Bigger first,

but after that MRV distinguishes a number of cases that Bigger first does not. See

Figure 3.3 for a case where Bigger first returns the same value for two orientations

of the same piece, but MRV does not.

Pref

Pref

θ1 θ2

Big (area): 4 Big (area): 4

MRV: (4, 0, 0) MRV: (2, 0, 1)

Figure 3.3: Minimum Remaining Values selects the small triangle P for orientation
θ2 because the domain (in cyan) is smaller than the domain for θ1 (in dark blue)

Value-based heuristics

When used after a variable-based heuristic in order of priority, value-based heuristics

selects, for a given piece, the placements that maximize some evaluation first. Used

alone, a value-based heuristics will also choose the piece to place. As remarked by

Bennell and Song [3], the drawback is that maximizing an evaluation for a partial layout

does not guarantee the best results for the final layout. For instance, minimizing the
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length of the layout at each assignment step will result in placing small pieces first, but

big pieces will eventually have to be placed. In this case, it is important to balance

the heuristics with more considerations. Bennell and Song [3] suggest to normalize

a measurement on the partial layout by a measurement on the placed piece, such as

dividing the increase of length for the layout by the length of the placed piece. We can

also take the progression of the search into account, for instance by considering the total

area of the placed pieces to normalize measurements on the partial layout.

Some of the value-based heuristics we use are listed below, where P denotes the new

piece placed in the layout evaluated by the heuristic.

• Maximum bounding box overlap (Max-BBO): we maximize the area of the intersec-

tion between P and the union of the bounding boxes of the other pieces, as we did

for the picker of the same name. We also define a balanced version as suggested

by Bennell and Song [3], where the intersection area is normalized by the area of

the new piece placed.

• Minimum convex hull waste (Min-CH): we minimize the unused space inside the

convex hull of the layout after P is placed. It is equivalent to maximizing the

usage ratio inside the convex hull of the layout. Figure 3.4 shows the unused space

in the convex hull of some layout. This is a generic and intuitive way to obtain a

good packing without trying to place the smaller or the bigger pieces first. Other

kinds of hull can be used, but convex hull and bounding box are the most used

in the literature, bounding box being cheaper to compute but axis-dependent.

Whichever hull is chosen, normalizing this heuristic by the sum of the areas of

the placed pieces allows us to have an estimation of the waste/usage of the final

layout.

• Exact fit (Exact): exact fit and exact slide positioning have been used by Sato

et al. [4] to place a piece at a position from where the degrees of freedom of

movement are the most limited. Such placements correspond to degenerated edges

and vertices in the piece translation domain, and were illustrated in Figure 2.3.

• Least Constraining Value (LCV): we adapted the Least Constraining Value heuris-

tics used in discrete constraint satisfaction problems. Our LCV maximizes the size

of the domains of remaining pieces after P is placed. We also use a relative version,
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Figure 3.4: Minimum convex hull waste: convex hull of the layout shown in dotted
orange line, unused space shown in gray

where we must minimize the reduction of the domain size of the remaining pieces.

We use the domain definition of a domain size as in MRV. Unlike MRV, we do

not work with a specific piece and orientation, so we average the domain sizes over

all possible orientations of each remaining piece, and we sum the averaged sizes

over all the remaining pieces. To use LCV, all the domains in a layout must be

computed when the layout is pushed to the fringe, since the heuristic of a node is

computed as soon as it enters the fringe. In comparison, other heuristics update

placement domains later, when the layout node is popped, and are therefore much

cheaper. See section 4.4 Incremental cache for optimization notes. The effect of

LCV is that remaining pieces have bigger remaining domains after the placement,

making it easier to place more pieces afterward, at least in short-term.

• Min length: we minimize the length of the layout as much as possible. It is the

most direct attempt to limit the cost of the solution, but does not guarantee that

pieces will fit well together. The effect of the heuristic is that pieces are stacked

to the left, a priori is an untidy manner. It is a very cheap heuristic in terms

of computation. The problem is that, unless a variable-based heuristics such as

Bigger first is used before, all the small pieces will be placed first and the end of

the search will be difficult, with only big pieces remaining.

• Minimum dead area (Min-DA): minimize the area of wasted regions or dead regions

in the remaining space available in the container. The concept of dead regions is

explained in section 3.5.2 Dead region analysis.
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Pref

(a) Placement on the left: preferred be-
cause remaining domain is bigger

(b) Placement on
the right: leave

smaller domain

Figure 3.5: Least Constraining Value applied to the placement of the big triangle
(Tangram problem). To simplify, only the domain of the remaining parallelogram is

considered, shown in pale green.

3.5 Filtering

Filtering is a fundamental component of constrained search. In Constraint Satisfaction

Problems, filtering consists of two phases: domain revision and dropping. For Con-

straint Optimization Problems, we replaced dropping with another phase, the cost limit

extension.

• domain revision: each time a variable has been assigned, we revise the domains

of unassigned variables by removing values that does not satisfy some problem

constraints. The most basic revision is Forward Checking (FC) and ensures arc

consistency between the newly assigned variable and all the unassigned variables

bound to it by a binary constraint.

• dropping : in a Constraint Satisfaction Problem, when a new node is popped, its

assignment is examined to see whether it is globally consistent, i.e. it is possi-

ble to complete the assignment while satisfying all the problem constraints. If

the assignment is proven not globally consistent, the node is dropped and the

search continues with other nodes. In most cases, dropping occurs because one

of the variables has an empty domain, but more advanced methods can detect

non-consistency earlier.

• cost limit extension: in a Constraint Optimization Problem, non consistency can

also be proven for a given cost limit (a given container length in the packing

problem). If a state is inconsistent, it is always possible to extend the cost limit
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so that the state becomes consistent again. In the irregular packing problem, this

means that instead of dropping a layout node when it is not consistent, we extend

the length of the container and continue the search. However, the solution may be

expensive after many extensions.

We have adapted both phases to our graph search. Domain revision is typically done

after a layout node is popped, but may be done earlier if a heuristic requires it. For

instance, with the LCV heuristic, domains are revised for successor layouts before they

are pushed to the fringe. The computation for domain revision is described in the next

section, and the procedure to revise the domains when needed is explained in Section 4.4

Incremental cache. The dropping phase is more regular and always occur after a node

is popped. This is because dropping requires to revise the placement domains first, and

it is cheaper to wait for the nodes to be sorted and then rejecting non consistent layouts

among the best than checking them all when they are pushed to the fringe. Advanced

elimination procedures are described in section 3.5.2 Layout dropping and 3.5.3 Cost

limit extension describes the process of extending the container length.

3.5.1 Domain revision

In the packing problem, all the pieces are bound to every other by a binary constraint,

forming a network of constraints also called rhizome. Therefore, when applying Forward

Checking, the domains of all the remaining pieces are revised. Since the collision-free

region is the set of positions of a piece that satisfy all the problem constraints, applying

Forward Checking is equivalent to ensuring that the translation domain of each piece is

equal to its CFR.

Let P1, . . . , Pk be the sequence of pieces previously placed. Let P be a remaining piece

in a given orientation for which we want to apply Forward Checking, i.e. we want to

determine CFR(C, (P1, . . . , Pk), P ).

We have seen in equation 2.10 how to compute the CFR from an IFP and a union of

NFPs. To avoid expensive union operations, we compute the CFR incrementally, with
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the initialization and update formulas: CFR(C, (), P ) = IFP(C,P )

CFR(C, (P1, . . . , Pk+1), P ) = CFR(C, (P1, . . . , Pk), P ) \NFP(Pk+1, P )
(3.1)

where NFP(Pk+1, P ) takes the placement of Pk+1 into account with equation (2.3),

and the difference operation is detailed in section 4.3 Non-manifold geometry, equation

(4.14).

Once the collision-free region has been computed for piece P with orientation θ, we set

the translation domain Dθ(P ) = CFR(P, θ).

Note that filtering techniques that enforce consistency of higher order also exist; they

would ensure that it will be possible to place a certain number of pieces from a given

state. However, because the constraints of the packing problem form a rhizome and every

piece can be placed anywhere in the container, it is difficult to predict the influence of

a piece on another several steps ahead.

3.5.2 Layout dropping

In Constraint Satisfaction Problems, when an assignment is not globally consistent, it

can be rejected from the search. In the next subsections, we describe three methods to

detect non-consistency in a layout.

Empty domain

If during domain revision, the domain of one of the remaining pieces was reduced to a

empty set, then the layout is non-consistent and the node can be dropped immediately.

Furthermore, we can prove that the layout is globally not consistent in other specific

situations. First, we introduce a few geometrical concepts to support our analysis of the

placement domains.
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1

2
(a) Free space composed

of two free regions

1

2
(b) Square bottom vertex
placed at the junction of

two free regions

Figure 3.6: Free space decomposed in two free regions

Free space and free region

In this section, we introduce the concepts of free space and free region. We define the

free space as the set of points that are not covered by any pieces in the container. Unlike

the CFR, the points in the free space do not represent the translations of a piece, but

actual points in the container. Therefore, the free space is not related to a specific piece

and is directly visible on the layout. For a layout with placed pieces (P1, . . . , Pk), the

free space S inside the container C is:

S(P1, . . . , Pk) = C \
⋃
i=1..k

Pi (3.2)

Again, we can compute the free space incrementally:

 S() = C

S(P1, . . . , Pk+1) = S(P1, . . . , Pk) \ Pk+1

(3.3)

The free space is an open set and does not contain the boundaries of the pieces and of

the container. The free space is composed of a finite number of open polygonal parts

that we call free region.

Because free regions are isolated from each other, a new piece can and must be placed in

only one free region at a time. Since pieces are closed geometries, the interior of a piece

may be included in a free region, whereas the geometry of a piece may be included in
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the closure of a free region. See Figure 3.6a for an illustration of a free space composed

of two free regions.

We want to know in which free regions a remaining piece P can fit. We call such regions

the fit regions of P . Similarly to free space, free regions represent actual points in the

plane, but we can relate them to the CFR of a piece in order to find its fit regions. A

free region R is a fit region of P iff the CFR of P contains a translation for which P is

located inside R.

Let P be a piece with a given orientation, u ∈ R2, R a free region. tu(P ) is located

inside R iff P is placed in its CFR and one of its interior point belongs to R:

int(tu(P )) ⊆ R⇔ u ∈ CFR(P ) ∧ ∃M ∈ int(P ),M ∈ R (3.4)

Let M ∈ int(P ), and we define v =
−−−−→
PrefM . The CFR of P is the set of all the

feasible positions of its reference point. By translating CFR(P ) by v, we obtain the set

of feasible positions of the interior point M that we call an interior point translation

domain IPD = tv(CFR(P )). Therefore:

R is a fit region of P ⇔ (tv(CFR(P ))) ∩R 6= ∅ (3.5)

Figure 3.7 shows an example of a piece P where the reference point is outside the

geometry. By translating the CFR of P , we obtain the IPD of P . Here, the IPD has

only one part, which is contained in the only fit region of P , the upper free region.

Pref

P

CFR(P) v

M
v

IPD(P)

Figure 3.7: Interior point translation domain of triangle piece P in purple. The

collision-free region of P , in light green, is translated by v =
−−−−→
PrefM , resulting in the

IPD.
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It is worth noting that we work with open sets and interior points because if two regions

are contiguous, closed sets and boundary points are not enough to determine inside

which region a piece is located. For instance, in 3.6b, we study the fit regions of the

square piece. The bottom vertex of the square belongs to the closure of both regions

1 and 2 at their junction point, and testing the position of this vertex against the free

regions is ambiguous. In contrast, the center of the square is an interior point and only

belongs to region 1.

Algorithm 4 describes the process of determining the fit regions of each remaining piece.

The function returns a dictionary containing the list of fit regions per piece, where pieces

are identified by a unique ID. The first phase of the algorithm consists in precomputing

all the interior point translation domains, and the second phase uses equation 3.5 to

verify if a piece can fit in a region.

Algorithm 4 Determine fit regions for each remaining piece

1: function get-fit-regions(node)
2: IPD ← empty dict . dictionary of interior point domains per piece ID
3: for P in node.remaining pieces do
4: for θ in O(P ) do
5: M ← a point of int(P )

6: v ←
−−−−→
PrefM

7: IPD [P.id, θ] ← tv(node.CFR(P, θ)) . CFR for the layout in node

8: fit region dict ← dict of empty list for each piece ID
9: for R in node.free regions do . free regions for the layout in node

10: for P in node.remaining pieces do
11: for θ in O(P ) do
12: if IPD [P.id, θ] ∩R 6= ∅ then
13: append R to fit region dict [P.id]
14: break . piece can fit for one orientation, no need to check others

15: return fit region dict

Dead region analysis

We define a dead region as a free region in which no piece can fit. When a dead region is

found, we can consider it as a waste from the point of view of the packing. The remaining

pieces must occupy the other regions or living regions. We apply a simple area analysis

to check whether the remaining pieces can possibly fit in those living regions. We define

the living area margin LAM as the difference between the area of the living regions LRi
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and the area of the remaining pieces Qi:

LAM =
∑
i

A(LRi)−
∑
i

A(Qi)

If the margin is positive or null, then the remaining pieces fit ”in area” in the living

regions, i.e. the total area of the living regions is enough to contain all the remaining

pieces. However, this study does not take the shape of the pieces into account, hence we

cannot guarantee that the pieces can geometrically fit as well. If the margin is negative,

then the area of the living regions is not enough to contain all the remaining pieces, and

the layout is proven globally non-consistent: we can drop the layout node. See figure

3.8 for a representation of a dead region. On the figure, the only living region, in white,

is not enough to contain all the remaining pieces in area, because the Tangram only has

compact solutions, i.e. solutions with no waste.

dead region

remaining 
pieces

Figure 3.8: Dead region in gray: none of the remaining pieces can fit there

In addition, dead region analysis can useful for heuristics: as stated in section 3.4.2

Value-based heuristics, we can define Minimum dead area, a value-based heuristic that

returns the sum of the areas of the dead regions in a layout. With this heuristic, a

search will avoid layouts that create too much waste. However, the risk is that the

search artificially avoids creating dead regions by placing the pieces so that there is

always a small space that links all the parts of the free space together, and that dead

regions can never be isolated. Another disadvantage of this heuristic is that it requires

to compute more placement domains, similarly to LCV, so it increases the heuristics

computation time.

Area knapsack analysis

We can go further with our domain analysis. Again, we use the actual geometry of the

remaining pieces to determine their respective fit regions. Then, only considering their
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areas, we try to distribute the pieces into the free regions to see if they can fit without

overflowing in area, this time considering each region as a separate container.

This problem is itself a variant of the irregular packing problem called the One-Dimensional

Multiple Heterogeneous Knapsack Problem or 1D MHKP (Wäscher et al. [1]): one-

dimensional objects called orders have a certain length and must be packed into a set

of one-dimensional containers called stocks that have different lengths. In our case, the

orders are the remaining pieces, the stocks are the free regions, and the lengths are the

areas of the pieces and the regions. In other words, we have reduced the problem of 2D

packing to a simpler 1D sub-problem. If the 1D problem is infeasible i.e. it has no solu-

tions, then it is impossible to solve the 2D problem. Indeed, the existence of a packing

of pieces into the free regions implies the existence of a distribution of their areas into

the areas of the free regions. However, since the 1D problem has looser constraints than

the 2D problem, the existence of a solution to the 1D problem does not guarantee the

existence of a solution to the 2D problem.

orders (areas)

4 4 4 3

1 2 outside

stocks
9

6

1

2

Figure 3.9: Area knapsack: the remaining pieces cannot fill the free regions in area

On figure 3.9, the container has two free regions numbered 1 and 2. Region 1 has an

area of 9, region 2 an area of 6. The remaining pieces are shown around the container

and we assume that they cannot be rotated. The fit region analysis shows that only the

yellow (elbow-shaped) piece can fit in region 2. However, its area is only 3, so it can

only fill half of region 2. The three other pieces can all fit in region 1, but their total
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area is 3 ∗ 4 = 12, which is superior to the area of region 1. Therefore, it is impossible

to place all the pieces in the free regions. This layout is globally not consistent.

As always, non-consistent layouts are dropped. The 1D MHKP is discrete and can be

either solved or proven to be infeasible very fast. Therefore, we have an efficient filter

method for dense packing problems where isolated regions tend to appear quickly.

Note that the Area knapsack analysis includes the inference and conclusion of the Dead

region analysis since a dead region is a special case where a free region stock cannot

receive any piece order. Therefore, filtering with the Area knapsack analysis allows to

drop at least as many nodes as with the Dead region analysis.

Implementation note 2. The 1D MHKP is a discrete constraint optimization problem,

and is therefore easily tackled with a graph search. For this reason, we reused our frame-

work for hybrid graph-constrained search for the sub-problem of Area Knapsack, which

required almost no extra implementation. This is why we often introduce generic notions

of node, heuristics, filter and cost that can be applied to any Constraint Satisfaction and

Optimization Problem, and then specialize the program modules for specific problems.

3.5.3 Cost limit extension

In Constraint Optimization Problem, instead of dropping an assignment that is not

consistent for a given cost limit, we can extend the cost limit instead. In the packing

problem, it is equivalent to extending the length of the container L when a layout is not

consistent with the current L. By giving more space to the remaining pieces, we increase

the chance to find a complete and valid layout. Whereas local searches gradually increase

and decrease L, we only extend L. We choose the next value of L so that the layout

cannot be proven non-consistent anymore by the analysis used for layout dropping. For

each of the analyses described in the above sections, we explain the length extension

procedure.

• Empty domain: If the domain of piece P is empty, we extend L so that CFR(P )

contains at least one point, for at least one orientation. This corresponds to

allowing P to be placed on the very right of the container. On figure 3.10, the

square cannot fit anywhere in state 1. We extend to length so that the square
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can be placed to the right of the container, in its orientation that has the smaller

length.

extend

1 2

Figure 3.10: Length extension for empty domain of square piece

• Dead region analysis: If the living area margin LAM is negative, consider the area

overflow AO = −LAM . We want to add the area AO to the container area so

that the free regions are enough to container the remaining pieces in area. Since

the container has a width W , we have to increase the length L by at least AO/W .

However, if AO/W is too small, this will produce another dead region, so in this

case we must extend the container so that the smallest piece in length can be

placed to the right of the container. On figure 3.11, the area overflow is equal

to area of the dead region because the solution to the Tangram with its original

container length is compact. But an extension of AO/W would create another

dead region, so we extend L by the length of the square instead.

dead region
extend

not enough

Figure 3.11: Length extension: area compensation (in pale green) is not enough,
must extend for square

• Knapsack area analysis: if there is no solution to the area knapsack problem, we

extend the container length just enough so that there is one. We have to complete

the assignments to the knapsack problem as much as possible to see which pieces
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among the shortest are left outside the container in the end. Then, we have to

extend L so that those pieces can fit in length and in area on the right of the

container. For instance, Figure 3.12 shows the container extension required if the

case shown in Figure 3.9 happened in the Open Dimension problem. Note that

the orange (¬-shaped) and the purple (s-shaped) pieces seem to overlap because

the area knapsack does not consider the actual geometries of the pieces.

extend

orders (areas)

4 4 4 3

Figure 3.12: Length extension: 1D knapsack problem must have a solution

This approach allows us to work with a fixed container length as in the Single Knapsack

Problem, until a layout is proven non-consistent for the current length and we have to

extend it. The advantage of limiting L is that the search will not spread the layout to the

right, as long as there is enough space left in the container. The disadvantage is that the

search will give up as soon as a layout is proven non-consistent, and extend L immediately

instead of backtracking. In order to balance this behavior, we continue searching for

better solutions once a solution is found. To ensure this, we use an additional filter

exclusive to Open Dimension searches, that drops any layout with a length equal or

superior to the length of the best solution. This can be seen on line 16 of Algorithm 2.

We can sum up the length extension process as follows:

1. Initialize L with the smallest length possible Lm

We compute the length that a hypothetic rectangular layout where all pieces are

packed with a usage of 100% would give. Since in such a packing, the sum of all

the piece areas is equal to the area of the rectangle, we deduce the minimum length

Lm =
n∑
i=1
A(Pi)/W
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2. If a layout is proven non-consistent for the current L, increase L so that it cannot

be proven non-consistent anymore

3. Continue the search normally as in a Single Knapsack Problem, but reject layouts

where L has been extended to a value equal or higher than the length of the best

solution

4. If a model layout with a lower length than the previous solutions is found, record

it as the new best solution

Unlike local search techniques found in the literature, our approach does not allow to

reduce the container length, because we do not include any algorithm to relocate pieces

that would protrude from the container after this operation.

3.6 Example

An example of search tree with a compact puzzle is shown on Figure 3.13. The puzzle

pieces have been taken from the Himilk chocolate puzzle of Hanayama and Meiji [16].

The search tree shown starts in the middle of the search, and only a few branches are

shown. All branches eventually end with a node drop due to either the presence of

an empty domain, a negative living area margin after the dead region analysis or an

infeasible area knapsack problem.
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area knapsack infeasible

empty domain

area knapsack infeasible

3 < 5 and 3+4 > 5

remaining 

pieces

3 < 4 and 3+3 > 4

living area margin < 0

empty domain

living area margin < 0

5

4

Figure 3.13: Example of search tree. Dead regions in gray, piece with empty domain
shown after cross symbol, area comparisons shown for area knapsack
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Implementation

4.1 Problem representation

Problem data is stored in an XML file that follows the XML Schema suggested by Mar-

tins et al. [17] in 2006 and improved gradually since. The format, called NestingXML, is

available as an XSD (XML Schema Definition) file on the website of the ESICUP (Euro

Special Interest Group on Cutting and Packing) [18], on the NestingXML page [19].

The format defines the shape of the container and the pieces, the number of pieces of

each type to pack, their allowed orientations, metadata to help computations such as

precomputed NFPs and sometimes a few solutions found by other researchers.

4.2 Language and libraries

We developed our program in Python 2 for fast prototyping. We used the following

packages:

• Geometrical computations: Shapely

Shapely [20] is a Python package for spatial analysis based on GEOS (Geometry

Engine, Open Source) [21], a C++ port of the Java Topology Suite [22]. GEOS is

specialized in geographical analysis and widely used in world imaging applications.

Shapely 1.5 does not allow the developer to choose a specific precision model and

thus we think that it is not suited for geometrical computations that require a

42
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high precision. Nevertheless, rounding and merging techniques allowed us to use

the package for the packing problem.

• XML parsing: generateDS

generateDS generates a Python class from an XSD file, and parses XML files

that follow the specification of the XSD to an instance of the generated class.

generateDS is based on lxml, an XML parser for Python that is not aware of

XML Schema. We used generateDS to parse benchmark problems provided by the

ESICUP, and to generate the XML files for our own toy problems, such as the

Tangram.

• GUI: Tkinter and matplotlib

Tkinter [23] is a basic GUI toolkit for Python. It does not feature advanced

capabilities and graphics but was enough for our purpose. We built a single window

application that loads a problem from an XML file and runs a search. It is possible

to tune the search parameters introduced in this thesis. See Appendix: Application

GUI for a view of the application window. We used Matplotlib [24], a Python 2D

plotting library, to plot the search steps and the results.

In the literature, many implementations are done in C++, in particular with the C++

library CGAL (Computational Geometry Algorithms Library) [25]. CGAL provides

exact precision calculation and a variety of geometric tools, such as Minkowski sums

and Nef polygons, that can make the computations of no-fit polygons and collision-free

regions easier.

4.3 Non-manifold geometry

In order to handle degenerated edges and vertices present in no-fit polygons and collision-

free regions, we need a class of objects that supports non-manifold geometrical opera-

tions. One solution is to use Nef polygons.
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4.3.1 NFP, IFP and CFR as Nef polygons

Nef polygons, designed by Nef [26], represent the set of polygons obtained through a

combination of set intersection and complement operations applied to a finite set of half-

planes. A brief description of the concept is done by Seel [27] and its implementation

for the CGAL library is detailed by Seel [28]. In this implementation, Nef polygons are

represented by a plane map (V,E, F ) of vertices, edges and faces, each edge and vertex

marked as either included or excluded. Nef polygons handle the kind of degenerated

parts that we can find in no-fit polygons, inner-fit polygons and collision-free regions.

They may be bounded or unbounded. An example of unbounded Nef polygon is shown

on Figure 4.1, with included parts colored.

Figure 4.1: Example of Nef polygon. Included edges and points are represented by
darker lines and dots, excluded parts are in white. The frame represents positions at

the infinity and edges touching the frame represent affine rays or affine lines

No-fit polygons, inner-fit polygons and collision-free regions are instances of Nef poly-

gons. The set of NFPs is the set of open Nef polygons and the set of IFPs and CFRs is

the set of closed Nef polygons. Furthermore, when pieces and containers are bounded,

NFPs and IFPs/CFRs are bounded open and bounded close Nef polygons respectively.

Although physical pieces and containers are always bounded, it is useful to consider

unbounded geometries because (1) with them the set of Nef polygons is closed under

the complement operation and (2) they can be used for intermediate computations.

A few NFPs are represented on Figure 4.2 and an IFP is represented on Figure 4.3

with the same graphical conventions as on Figure 4.1. For the IFP, a non-rectangular

container was exceptionally chosen to illustrate a non-trivial case.
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NFP(A,B) NFP(A,B)

Figure 4.2: No-fit polygon of piece B with a modified piece A and with two other
pieces, as open Nef polygons

Figure 4.3: Inner-fit polygon of piece B inside irregular container, as a closed Nef
polygon

If an implementation of Nef polygons is available, it is possible to apply unary or bi-

nary operation on NFPs, IFPs and CFRs as Nef polygons. In order to obtain similar

results with a simple geometrical library that only supports bounded closed polygons,

closed lines and points, we implemented a class that represents a subset of bounded Nef

polygons that we called Polygon with Boundary.

4.3.2 Polygon with Boundary

We define a multi-polygon with holes as a union of zero, one or more closed polygons with

polygonal holes. Polygons with Boundary represent the set of multi-polygons with holes

from which a finite number of closed segments and points may have been subtracted or
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added. This definition does not only limit the scope of geometries available compared

to Nef polygons, but also give us clues on how to model the data structure of a Polygon

with Boundary.

An example of bounded Polygon with Boundary is shown on Figure 4.4.

Figure 4.4: Example of bounded Polygon with Boundary

Data structure

The data structure of a Polygon with Boundary PWB contains three components: a

regularized set, a subtractive boundary and an additive boundary.

Regularized set The regularized set RS (PWB) is the closure of the interior of the

set. It corresponds to the original multi-polygon with holes from which we subtracted

or added boundaries, and contains all the non-degenerated parts of the geometry. We

call ∂RS (PWB) the natural boundary of PWB .

Subtractive boundary The subtractive boundary SB(PWB) contains all the seg-

ments and points that should be removed from the regularized set. We enforce that

only actual points of the regularized set are subtracted: SB(PWB) ⊆ RS (PWB) (inclu-

sion condition). The subtractive boundary is closed. The parts of the natural boundary

that are excluded from PWB should all be stored in the subtractive boundary.

Additive boundary The additive boundary AB(PWB) contains all the segments

and points to add to the regularized set. Furthermore, all the parts of the natural

boundary that are included in PWB should be stored in the additive boundary. Note

that this is redundant with knowing the subtractive boundary, but more convenient
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for computations. Apart from parts on the natural boundary, the additive boundary

should be outside the regularized set: AB(PWB) ⊆ ∂RS (PWB)∪RS (PWB)e (inclusion

condition). The additive boundary is closed.

The actual geometry of a Polygon with Boundary is

PWB = (RS (PWB)\SB(PWB))∪AB(PWB) = (int(PWB)\SB(PWB))∪AB(PWB)

(4.1)

due to the redundancy between the subtractive and the additive boundaries.

Figure 4.5 shows the decomposition of the previous example of Polygon with Boundary.

=

- +

natural boundary

Figure 4.5: Decomposition of Polygon with Boundary with regularized set and bound-
aries

The boundary of a Polygon with Boundary is given by both boundaries:

∂PWB = AB(PWB) ∪ SB(PWB)

which includes the natural boundary.

Finally, we can isolate each component:

RS (PWB) = int(PWB)

SB(PWB) = RS (PWB) \ PWB

AB(PWB) = PWB \ int(PWB)
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Geometric tools as Polygons with Boundary

In this section, we revisit the NFP, IFP and CFR as Polygons with Boundary.

NFP An NFP is an open Polygon with Boundary (OPWB). The regularized set rep-

resents the set of overlap and touch positions. The subtractive boundary always include

the natural boundary, and there is no additive boundary. Figure 4.6 shows the decom-

position of one of the NFPs used in the previous examples. NFPs as Polygons with

Boundary are characterized by:

 ∂NFP ⊆ SB(NFP)

AB(NFP) = ∅
(4.2)

= -
open polygon 
with boundary

regularized set subtractive 
boundaries

Figure 4.6: Decomposition of a no-fit polygon as a Polygon with Boundary

IFP/CFR An IFP or a CFR is a closed Polygon with Boundary (CPWB). The in-

terior represents the set of non-touching contained positions. There is no subtractive

boundary, hence the boundary is entirely given by the additive boundary, that repre-

sent touching positions inside the container. Therefore, the additive boundary always

includes the natural boundary. Figure 4.7 shows the decomposition of the IFP in the

previous example. To sum up, IFPs and CFRs as CPWB are characterized by:

 ∂CPWB ⊆ AB(CPWB)

SB(CPWB) = ∅
(4.3)
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= +
open polygon 
with boundary

interior set additive 
boundaries

Figure 4.7: Decomposition of an inner-fit polygon as a Polygon with Boundary

Polygon with Boundary operations

Polygons with Boundary are not closed under the union, intersection and difference

operations. For instance, by removing a point from an additive boundary edge we can

obtain a half-open segment, which is not a legal component in our model. It is possible

to ensure that the result of an operation is still a Polygon with Boundary by regularizing

it, i.e. taking the closure of the interior of the additive and the subtractive boundaries.

In this section, we choose another method. Since we are only interested in NFPs,

IFPs and CFRs, we only consider operations on open Polygons with Boundary and

closed Polygons with Boundary. Each group is closed under the union and intersection

operations, because additive and subtractive boundaries are not mixed together. In

addition, the complement link both sets together, as seen in equation (2.10).

We can define operations on Polygons with Boundary by providing the expression of

each component, RS, SB and AB, of the result. In the formula below, R and S are

two OPWB and T and U are two CPWB. For each operation, the expression of each

component of the resulting Polygon with Boundary is given, omitting the subtractive

boundary for CPWB and the additive boundary for OPWB, as they are respectively

empty. All the formulas have been written so that the decomposition equation (4.1) and

the inclusion conditions on the subtractive and additive boundaries are verified. For

each formula, we provide figures with actual NFPs, IFPs and CFRs.
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Union The union of two OPWB is:

R ∪ S =

 RS (R ∪ S) = RS (R) ∪ RS (S)

SB(R ∪ S) = (SB(R) \ RS (S)) ∪ (SB(S) \ RS (R)) ∪ (SB(R) ∩ SB(S))

(4.4)

The difference operations mean that subtractive lines and points in one OPWB are

covered by the regularized set of the other OPWB, except if both geometries share the

same subtractive parts, in which case the last intersection SB(R) ∩ SB(S) is added to

the resulting subtractive boundary.

This operation is used for the NFP unions of the CFR formula (2.10), and to reconstruct

the NFP between two decomposed pieces, using equation (2.7). A case is illustrated on

Figure 4.8, where a NFP is reconstructed from a piece decomposition.

NFP(A2,B)

NFP(A1,B)

NFP(A,B)

Bref

A1

A2 A2A1 A

B

Figure 4.8: Reconstruction of NFP(A,B) with OPWB union for A = A1 ∪A2

The union of two CPWB is:

T ∪ U =

 RS (T ∪ U) = RS (T ) ∪ RS (U)

AB(T ∪ U) = (AB(T ) \ RS (U)) ∪ (AB(U) \ RS (T ))
(4.5)

This time, the difference operations are only required to ensure the inclusion condition

of the additive boundary. Without them, in the resulting union, the additive boundary

may contain parts inside the regularized set.

Unfortunately, the application of this equation is very restricted. The set of positions

in IFP(C1, B) ∪ IFP(C2, B) is the set of positions for which B is inside C1 or inside

C2, and not the set of positions for which B is inside C1 ∪ C2 as we would expect.

See Figure 4.8 for an example. Therefore, it is not possible to merge containers with

this formula, but the formula can still be used with individual containers or holes in
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a polygon. Instead, we must use the IFP/NFP duality (explained in paragraph 4.3.2

Complement) and compute NFP(C1, B) ∪NFP(C2, B).

Bref
B

C1 C2 C1 C2

IFP(C1,B) IFP(C2,B) IFP(C1,B)
∪

IFP(C2,B)

Figure 4.9: Union of IFP(B,C1) and IFP(B,C2) as CPWB

Intersection The intersection between two OPWB is:

R ∩ S =

 RS (R ∩ S) = int(RS (R) ∩ RS (S))

SB(R ∩ S) = (SB(R) ∪ SB(S)) ∩ RS (R ∩ S)
(4.6)

The regularization operation is required in the first expression because the intersection

of two polygons may be reduced to a line of a point, and only the boundary should

contain such geometries.

The formula can be directly used to determine the no-fit polygon with the intersection

of two pieces. Although this does not correspond to a physical reality, this is useful

to infer information on feasible positions even when one of the pieces does not have a

determined placement. For instance, on Figure 4.10, the F-shaped piece may have two

different orientations, represented by A1 and A2, but the translation is known. We are

certain that the space A = A1 ∩A2 will be occupied, so we can already use NFP(A,B)

to reduce the domain of B. In our approach, we do not use such inference.

The intersection between two CPWB is: RS (T ∩ U) = int(RS (T ) ∩ RS (U))

AB(T ∩ U) = (AB(T ) ∩RS(U)) ∪ (AB(U) ∩ RS (T )) ∪ (AB(T ) ∩AB(U))
(4.7)

The operation is used in particular when the length of the container decreases. The new

collision-free region of a piece can be deduced by computing the intersection of the old
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A2

NFP(A2,B)

NFP(A1,B) NFP(A,B)

Bref
B

A1

A2

A1

A

Figure 4.10: NFP(A,B) as OPWB intersection for A = A1 ∩A2

CFR and the new IFP. Figure 4.11 illustrates this case. In our algorithm, the container

never shrinks. Nevertheless, to compute the CFR for any container length we use the

following trick: we first compute the CFR for a very high length. Then we reduce the

container length and update the CFR for this new length. Therefore, in our approach,

we use the formula each time the length of the container increases or the CFR is updated

after a new piece is placed.

new CFR(B)

IFP(C,B)

old CFR(B)

old CFR(B)

IFP(C,B) for 
shrinked container

Figure 4.11: CFR(B) updated after decrease of container length with CPWB inter-
section

Complement The complement of a bounded set is an unbounded set, so Polygons

with Boundary are not closed under the complement operation. However, as explained
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previously with Nef polygons, it is useful to consider unbounded Polygons with Bound-

ary, with unbounded regularized sets and/or some boundaries being rays or lines, in

order to define the complement operation and deduce the formula of the difference op-

eration. Therefore, the following formulas are not used in our program but they can

help to understand the duality between OPWB and CPWB. Since the complement of

an open set is closed and vice versa, the complement operation transforms an OPWB

into a CPWB and vice versa.

The complement of an Open Polygon with Boundary is a Closed Polygon with Boundary:

Rc =

 RS (Rc) = RS (R)c

AB(Rc) = SB(R)
(4.8)

The complement of a Closed Polygon with Boundary is an Open Polygon with Boundary:

T c =

 RS (T c) = RS (T )c

SB(T c) = AB(T )
(4.9)

The complementary operation has a meaning by itself for NFPs and IFPs. Let A and

B be two pieces, and let p ∈ R2 ×O(B) a placement of B. Then

p /∈ NFP(A,B)⇔ int(A) ∩ tu(int(B)) = ∅ ⇔ tu(int(B)) ⊆ int(A)c

⇔ tu(int(B)) ⊆ Ac

⇔ tu(B) ⊆ Ac

⇔ p ∈ IFP(Ac, B)

Therefore, there is a duality between NFPs an IFPs. The complementary of an NFP is:

NFP(A,B)c = IFP(Ac, B) (4.10)

and the complementary of an IFP is:

IFP(A,B)c = NFP(Ac, B) (4.11)

On Figure 4.12, an NFP is shown along with its complementary IFP.
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NFP(A,B)C=IFP(AC,B)

NFP(A,B)

Figure 4.12: Polygon with Boundary duality with reciprocal complement operation

Similarly, the complementary of the collision-free region of a piece is the set of positions

at which a piece overlaps with other pieces or protrude from the container.

Difference The difference X\Y is the intersection of X and Y c. Since we have defined

the intersection operation between two Polygons with Boundary of the same type and

the complement operation switches between OPWB and CPWB, we define the differ-

ence operation between an OPWB and a CPWB. The final formulas of the difference

operations do not contain complementary operations, and are therefore applicable to the

set of bounded Polygons with Boundary, that we actually implemented in our program.

Subtracting a CPWB T from an OPWB R gives an OPWB: RS (R \ T ) = RS (R) \ RS (T )

SB(R \ T ) = (SB(R) ∪AB(T )) ∩ RS (R \ T )
(4.12)

The operation can be used to compute the NFP of a piece with a hole. For instance,

let us consider a piece Q from which we subtract a hole H (without the boundary) to

obtain a new piece A: A = Q \ int(H). Then the set of no-fit positions of another piece

B with A is the set of no-fit positions of B with Q, excluding the fit positions in the

hole H:

NFP(A,B) = NFP(Q \ int(H), B) = NFP(Q,B) \ IFP(H,B) (4.13)

An illustration is given on Figure 4.13.
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A Q int(H)

= -

= - IFP(H,B)

Bref

B

NFP(Q,B)NFP(A,B)

Figure 4.13: NFP with a piece minus a hole, using the OPWB - CPWB difference

Subtracting an OPWB R from a CPWB T gives a CPWB: RS (T \R) = RS (T ) \ RS (R)

AB(T \R) = (AB(T ) \ RS (R)) ∪ (SB(T ) ∩ RS (R)) ∪ (AB(T ) ∩ SB(R))
(4.14)

An illustration is given on Figure 4.14. This is the most used operation because it a

CFR is a CPWB and the incremental CFR formula 3.1 requires to subtract an NFP

from a CFR.

CFR(C,(A),B)

Bref

B

IFP(C,B)

NFP(A,B)

Figure 4.14: Subtracting an NFP (OPWB) from an IFP (CPWB)

Finally, we illustrate the computation of a collision-free region when multiple pieces are

present in Figure 4.15, using equation 2.10.
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Bref

B

IFP(C,B)

CFR(B)

NFP(*,B)

Figure 4.15: Computing CFR as PWB from IFP and NFP with 3 pieces

4.4 Incremental cache

Geometrical computations are the most expensive in our program. In order to minimize

them, we combined two common optimization practices in software development:

• using a cache, to store geometries once computed

• lazy evaluation, to only compute geometries when needed

The no-fit polygons and the collision-free regions are the most expensive to compute,

but inner-fit polygons and free regions can be cached as well. Since placement domains

are equal to the collision-free regions, they can also be accessed from the cache.

Lazy evaluation is useful to do geometrical computations only when heuristics and filter-

ing require data to be up-to-date. For instance, the LCV heuristic presented in section

3.4.2 requires up-to-date placement domains in the cache of a node as soon as it is

pushed to the fringe, whereas other heuristics need to know them later, when the node

is popped. Thanks to lazy evaluation, LCV can access up-to-date information, but when

heuristics are used, unneeded computations are delayed. The ratio between the number

of popped and pushed nodes at one stage of the search, before backtracking, is equal to

the branching factor of the search, which is in the order of average number of placements
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picked per piece ∗ number of pieces, around 100 for the Tangram problem. Lazy evalua-

tion allow heuristics other than LCV to reduce the number of geometrical computations

of that ratio.

4.5 Source code

The source code is expected to be pushed to a Git repository hosted by Github by

the end of February 2016. The Python code for the solver will be available at https:

//github.com/hsandt/hipps (Hygracose-based Irregular Packing Problem Solver) and

the Python code for the underlying framework will be available at https://github.

com/hsandt/hygracose (Hybrid Graph-Constrained Search framework). If for some

reasons, the source code was not available at the expected date, visitors will be notified

by a message on the README page.

The first repository already contains the XML file for the Tangram problem, the original

NestingXML and a modified XML Schema Definition that supports non-degenerated

NFPs and IFPs. Appendix A.2 provides more information on this new format.

https://github.com/hsandt/hipps
https://github.com/hsandt/hipps
https://github.com/hsandt/hygracose
https://github.com/hsandt/hygracose
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Results

5.1 Benchmarks overview

We considered 9 benchmarks created by other researchers and available on the website

of the ESICUP at Data Sets > 2D > Irregular [2]. Those benchmarks are among the

most used by other researchers, and results of other approaches can be found, with final

container length / usage (percentage of occupied space) and computation time. We also

corrected a few mistakes that we found in the XML files distributed on the ESICUP

website. A partial erratum can be found in Appendix: A Benchmarks.

All the benchmarks from the ESICUP have been solved as Open Dimension problems,

but for some we have fixed the length of the container after the ODP search to do a more

restrictive Single Knapsack search, in order to discover solutions with lower lengths. This

process can also be automated as a two-level search, for instance using dichotomy on the

container length to find the minimum length for which the SKP can be solved within a

given time limit.

In addition, in order to compare different settings with our approach efficiently, we ran

a number of searches on a much smaller problem, the Tangram problem. The concept of

the game emerged in China during the Tang dynasty (618 - 907). Although the original

Tangram consists in creating various shapes with a set 7 pieces, we only worked with

the square container problem, since our research is focused on rectangular containers.

This toy problem is not available on the ESICUP website so we generated our own

XML file to describe it. The file is available as tangram.xml on our GitHub repository

58
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at https://github.com/hsandt/hipps, where the source code of the program is also

expected to be pushed.

5.2 Numerical results

5.2.1 Precomputation

During the precomputation phase, we compute the inner-fit polygons of each piece inside

the container, and the no-fit polygons between each pair of pieces. IFPs with rectangular

containers are cheap to compute, and must be computed repeatedly in Open Dimension

Problems because the container length changes dynamically during the search. For this

reason, the precomputation of IFPs does not noticeably improve efficiency, but could

reveal useful in Single Knapsack problems with complex containers. For instance, in

actual Tangram problems, a polygonal shape, our container, must be reproduced by

placing Tangram pieces together.

Even if IFPs are computed, NFP computations amount to 99% of the precomputation

time. To compute the NFPs we used the Cunninghame-Green algorithm [9] combined

with a simple triangulation to have a convex decomposition of the pieces, as described in

section 2.2 No-fit polygon. Table 5.1 shows the precomputation time for our benchmarks,

along with information of the problem pieces. The number of piece types, the total

number of pieces and the average number of vertices per piece type are written in order

in the first columns. Since NFPs are more complex when the shapes of the pieces are

more complex, these measurements are strongly related to the computation time of the

NFPs.

All precomputation times are negligible compared to the search time shown in the next

sections, except for Jakobs1 and Jakobs2. The reason is probably that the piece shapes,

although not very complex, are not suited for triangulation. For instance, triangulation

is very ineffective with ”+”-shaped pieces, producing 9 triangle parts instead of 5 con-

vex parts with an average convex decomposition, and 3 convex parts with an optimal

decomposition.

We expect a convex decomposition to be faster than a triangulation because it creates

fewer convex parts, hence fewer unions are required to reconstruct an NFP (although

https://github.com/hsandt/hipps
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Table 5.1: Precomputation time per benchmark

Data set Piece types Total Vertices Orientations (°) Time (s)

Tangram 7 7 3.3 Any step of 45° 1.5

Albano 8 24 7.25 0, 180 13.5

Dagli 10 30 6.30 0, 180 6.6

Dighe1 16 16 3.87 0 0.5

Dighe2 10 10 4.70 0 0.4

Fu 12 12 3.58 0, 90, 180, 270 3.7

Jakobs1 25 25 5.60 0, 90, 180, 270 261.1

Jakobs2 25 25 5.36 0, 90, 180, 270 232.2

Shapes2 7 28 6.29 0, 180 4.9

Shirts 8 99 6.63 0, 180 8.5

convex decomposition itself is more complex, as explained in the No-fit polygon section).

The specialized method of orbital sliding provided by Burke et al. [14] is another cheaper

alternative.

It is also possible to store the NFPs after computing them the first time, so that we do

not have to recompute them for any future searches on the same data set. The structure

of the NFPs can be stored in the XML file of the problem, in the <nfps> element, and

most benchmarks provide them. If NFPs are entirely generated by parsing NFP data in

the XML file, precomputation time is reduced to less than 1 second for simple data sets

such as Dighe1 and Dighe2, and a few seconds for more complex data sets.

Note that the current XML Schema cannot handle degenerated parts in NFPs, so we

designed a new Schema to handle them. The parts changed in the new XSD file can

found in Appendix: A Benchmarks, and the file itself is available at https://github.

com/hsandt/hipps as nesting degenerated.xsd.

5.2.2 Tangram problem

Single Knapsack Tangram

We applied our approach with various settings on the Tangram problem as a Single

Knapsack Problem. The abbreviations are explained in Table 5.2 and the results are

https://github.com/hsandt/hipps
https://github.com/hsandt/hipps
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shown in Table 5.3.

All the heuristics are ordered by depth → variable → value. The depth-first search

heuristic is always used, and the basic Forward Checking and empty domain layout

dropping are used in all settings. Some heuristics use a variable-based heuristic without

a value-based heuristic and vice-versa.

Table 5.2: Table abbreviations

Vertex Vertex picker

Min-BB Minimum layout bounding box picker

Var. Variable-based heuristics

Big Biggest piece first, in area

MRV Minimum Remaining Value

Value Value-based heuristics

FRA Filter by free region / dead region analysis

Iter. Number of iterations (nodes popped)

Exp. Number of nodes expanded (popped and not dropped)

Fringe Maximum fringe size (number of nodes stored)

Layout Layout completion (full if all pieces are placed)

If we compare strategies with different variable-based heuristics, we can see that MRV,

that was designed as a generalization of Biggest piece first, is a much more effective

heuristics than the latter. All other settings equal, the number of iterations and ex-

panded nodes as well as the computation time are roughly divided by 3 with MRV

compared to Biggest piece first.

If we compare value-based heuristics, other heuristics equal, we observe that:

• The choice of the picker radically changes the performance, with the minimum

layout bounding box picker offering an edge over the classic vertex picker, and the

dominant point picker providing the best results whichever the heuristics.

• Cheap heuristics such as Min-CH (minimum convex hull) and Exact (exact fit and

slide) reduce the computation time and the number of iterations / expanded nodes

when there are no variable heuristics. When MRV is used, they do not improve

the search and when DP (dominant point picker) is used, they worsen the search.
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Table 5.3: Results for fixed size Tangram

Results of our hybrid graph-constrained search with various strategies for the fixed size
Tangram problem

Strategy settings Result

Picker Var. Value Filter Iter. Exp. Time (s) Fringe Layout

Vertex LCV FRA 5000 417 81.3 425 6/7

Vertex 3400 306 39.6 323 full

Vertex Big 3175 283 36.2 321 full

Vertex FRA 2076 155 28.3 323 full

Vertex Big FRA 1759 134 24.6 321 full

Vertex Min-CH FRA 1710 138 22.1 348 full

Min-BB MRV FRA 792 56 12.2 273 full

Vertex Exact 722 57 9.3 342 full

Vertex MRV 716 86 8.9 316 full

Vertex MRV ∅ / Exact FRA 543 47 7.2 316 full

Vertex MRV LCV FRA 401 36 20.0 317 full

DP Min-CH FRA 250 32 6.2 263 full

DP Exact FRA 149 20 4.0 272 full

DP Exact 179 24 3.8 272 full

DP MRV FRA 127 18 3.1 263 full

DP FRA 107 17 3.3 256 full

DP MRV LCV FRA 93 15 14.7 261 full

This is probably due to the restricted nature of the SKP, as Min-CH is performing

better on the ESICUP benchmarks.

• LCV is an expensive heuristic as expected. Without MRV or DP to limit the

number of nodes expanded, domain computations on each expanded node are too

expensive and the search does not complete in time (1st row). Otherwise it still

multiplies the computation time by a factor 2 to 5. However, it reduces the number

of iterations and expanded nodes by 10% to 40%. In other words, the search is

more informed and makes better decisions but takes more time to run. For a

casual application, a computation time under 4 seconds is expected, so only the

best results with DP would work and LCV would be rejected.
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• Filtering reduces the number of expanded nodes as expected, and since the suc-

cessors of the dropped nodes are ignored as well, the number of iterations also

decreases. Filtering does not help the search to explore better layouts first, but

reduces the computation time by around 15%.

• The fringe size, that gives an indication of the memory used, is stable and decreases

gradually with better heuristics, picker and filtering. The picker is a critical factor

on the fringe size since it directly affects the branching factor of the graph search.

Open Dimension Tangram

After solving the Tangram as an SKP, we ran searches on the Tangram problem as an

Open Dimension Problem. The search runs unaware of the optimal length, 8. Results

are shown in Table 5.4.

The last column in the table shows the best length found at the end of the search. Our

algorithm extends the length of the container unnecessarily and ends with a sub-optimal

packing with a length of 8.97. However, the sequential placement of the pieces itself is

meaningful, with the big triangles compacted into a square first, see Figure 5.1b.

Table 5.4: Results for variable size Tangram

Results of our hybrid graph-constrained approach with various strategies for the
variable size Tangram problem

Strategy settings Result

Picker Var. Value Filter Iter. Exp. First Time (s) Fringe Length

Vertex MRV Max-BBO 5000 12+ 12.1 151 540 10.83

Vertex MRV Min-DA FRA 5000 609 116 315 555 10.0

Vertex MRV Max-BBO 5000 14+ 3.8 284 356 9.66

Vertex LCV FRA 4516+ 241+ 271 294 336 8.97

DP LCV FRA 47+ 13+ 15 69 237 8.97

Since search in COP continues after a solution is found, we recorded both the time where

the best solution was first found, First in the table, and the total time of the search,

both in seconds. For other measurements, we added a ”+” sign to indicate that the

value written was reached when the best solution was found, but increased later. The

(Time/First time) ratio should give an idea of the difference between values for the first

solution and values at the end of the search.
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(b) Tangram as an ODP

Figure 5.1: Results for the Tangram problem

Again, the best results are obtained with the LCV heuristic (length of 8.97), but the

DP picker is needed to limit the expansion of the graph and keep the computation time

around 1 minute. Min-DA is also expensive as it requires early domain computation,

and it provides medium results with a length of 10.

5.2.3 ESICUP Benchmarks

Results

We recorded the best results that we could find with our approach, trying different

strategies. More information on the strategies used can be found under the visual

representation of the results.

This time we score the resulting layouts by usage, the ratio of the total area of the

pieces on the area of the container with the best length found. All usages are written in

percentage. Usage is inversely proportional to the length of the container.

Computations have been done under Linux Ubuntu on a computer with a processor

Intel Core i7, 2.5GHz, with single threading. Geometrical computations were handled

by Shapely and GEOS. Results are shown in Table 5.5. Final layouts are shown on

Figure 5.2. Not all the layouts shown correspond to the best solution we have found.

The other strategies mentioned are:
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Table 5.5: Results for ESICUP benchmarks

Results for various approaches on benchmarks from the ESICUP

Data set Proposed Beam search Cuckoo ILSQN Exact

Usage Time (s) Usage Time (s) Usage Usage Usage

Albano 74.77 946 87.88 5460 89.58 87.14 89.21

Dagli 72.25 1867* 87.97 17331 89.51 85.80 88.36

Dighe1 68.05 88 100.00 1.4 100.00 90.49 100.00

Dighe2 100.00 166 100.00 0.3 100.00 84.21 100.00

Fu 74.03 4.1 - 334 90.28 1192 92.41 87.57 91.96

Jakobs1 66.22 43.4 85.96 2193 89.10 84.78 89.09

Jakobs2 66.37 497 80.40 75 87.73 80.50 84.83

Shapes2 66.26 2657 81.29 5603 84.84 81.72 83.30

Shirts 88.51 515 89.69 6217 88.96 88.12 87.59

• Beam search: devised by Bennell and Song [3], sequential search with low memory

usage

• Cuckoo: devised by Elkeran [6], local search with container length reduction and

a Cuckoo search on the position of the polygons

• ILSQN: devised by Imamichi et al. [5], an Iterated Local Search with overlap

evasion via penetration depth estimation

• Exact: local search combining exact fit and exact slide heuristic and simulated

annealing for the evolution of the container length, devised by Sato et al. [4]

Cuckoo, ILSQN and Exact fit strategies all spend 1200 seconds on Albano, Dagli,

Shapes2 and Shirts, and 600 seconds on the other data sets.

Remark 5.1. Beam Search was executed with a C++ program but on a Pentium D

processor. It would probably have a significant improvement in speed if it was executed

on a modern machine. However, Cuckoo, ILSQN and Exact fit searches are local search

that run for a given time and then stop, returning the best solution found. With better

processing power, those searches would still run the same time, but probably obtain

better solutions.

Remark 5.2. For Dagli, after the search on the Open Dimension Problem that lasted

around 1800 seconds, we ran a new search as a Single Knapsack Problem, setting the
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container length to a lower value. The second run took 65s and found a slightly better

packing than the ODP search, hence the total time 1867s. Note that the process of

applying a strict SKP search for different lengths can be automated, but requires a huge

amount of time in general.

Remark 5.3. For Fu, we wrote the time the best solution was found before the total

search time because the difference was huge. The dominant point picker was used for

this search.

Remark 5.4. Shapes2 is available under the name Blaz1 in the ESICUP benchmark XML

files.

Observations

Our results do not compete with other methods in terms of length/usage, but most

searches are executed under 1000s. Although our search is not local, the way we tackle

Open Dimension problems with container length extension allow us to obtain a solution

with a high length very fast, then to explore better solutions gradually over time. This

is in contrast with the beam search, another sequential search, which never backtracks

but put more emphasis on the evaluation at each step. We consider that our algorithm

would be appropriate for casual software applications, for which the user wants to find a

relatively good layout in a limited amount of time, without seeking an industrial quality.

The proposed method is effective in average for dense problems where pieces have dif-

ferent scales, such as Shirts, and problems with few simple polygons, such as Dighe2,

which is a dissection puzzle slightly more complex than the Tangram. However, the

resulting layouts have a very low usage on data sets with many square-like shapes, such

as Jakobs1 and Jakobs2.

Actual results depend on the heuristics chosen, but generally speaking, a vertex picker

combined with an MRV heuristic is stable, and completing it with a value-heuristic such

as maximum bounding box overlap limits the amount of waste for data sets of average

difficulty. The efficiency of evaluation-based pickers such as minimum bounding box and

dominant point strongly depends on the data set. Min-BB picker found the best layout

for Shirts, but failed to find good solutions with Dagli. The dominant point picker found

its best solution very fast with Fu, although the final usage is low compared to other



Chapter 5. Results 67

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

(a) Albano: MRV, Max-BBO
(usage 73.90%)
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(b) Dagli: MRV, Max-BBO in SS
for length 70 (usage 72.25% )
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(c) Dighe1: 2 bounded fringes
(500), dominant point, MRV,

LCV (usage 68.05%)
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(d) Dighe2: MRV, mDA (usage:
100%)
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(e) Fu: dominant point, MRV,
Max-BBO (usage: 74.03%)

0 10 20 30 40

0

10

20

30

40

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

(f) Jakobs1: dominant point,
Max-BBO (usage 66.22%)
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(usage 66.37%)
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(b) Shapes2 (Blaz1): MRV,
mDA, Min-CH (usage 66.26%)
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(c) Shirts: bounded fringe (500),
Min-BB picker, Max-BBO (usage

81.51%)

Figure 5.2: Results with the benchmarks of the ESICUP

researchers’ approaches. A possible reason is that because shapes in Dagli are round-

like, strategies that try to maximize penetration and fitting between piece shapes do

not work well and end picking an arbitrary placement instead, missing many placements

that could lead to a layout of equivalent or better quality.

Finally, regular picker, multiple and randomized fringe have been used in order to in-

crease the diversity of the layouts. In most searches, results were either not as good

as with more classical searches, or equivalent but required more computation time. For

Dighe1, however, where we are far from the optimal usage of 100%, a multi-search on 3

fringes returned better results on the 2 extra fringes. The best result was finally obtained

with a double bounded fringe, the size limit on the fringe contributing to reducing both
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the memory footprint and the computation time.

5.2.4 Complexity

Computation time being implementation-dependent and machine-dependent, we pro-

vided the number of iterations, expanded nodes and nodes stored in the fringe to facili-

tate comparisons with other algorithms. However, each iteration contains a number of

operations that depend on the exact implementation of the algorithm. The actual time

of an operation depends, again, on its implementation in the library used and on the

machine on which it is run. However, by providing the number of each type of opera-

tions, in particular geometrical operations, we hope to help other researchers to compare

their results with ours in a way that is implementation and machine-independent. We

also hope to release the source code of our program, as explained in section 4.5 Source

code, so that researchers can run it on their computers.

Algorithm analysis

In this section, we analyze the flow of the main iteration cycle and theoretical complexity

of each process block.

From the algorithms of the CSP and COP searches, Algorithm 1 and Algorithm 2,

presented in 3 Hybrid graph-constrained search, we built the flowchart on Figure 5.3.

There are 4 exit points possible during an iteration loop. We call exit point an instruction

at which the program may drop the node and restart the loop from the beginning

(continue instruction) or jump to the point after the end of the loop (break instruction,

only after finding a solution in an SKP or reaching the maximum number of iterations).

Depending on the moment an iteration exits, the number operations of an iteration will

vary. The exit conditions are:

1. Model found: happens only once for an SKP but may happen many times in an

ODP. In addition, for ODPs, if a node has a current cost higher than the best

solution found, it is immediately dropped even if its layout is still incomplete. On

our benchmarks, in average, this happens in 80% of the iterations.
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Figure 5.3: Flowchart of an iteration for a CSP (black and blue arrows) and a COP
(black and orange arrows)
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2. Empty domain: for an SKP, the most common cause of early continue because,

when the layout is about to be completed, there is little space left for the remaining

pieces. 85% of the nodes are dropped due to an empty domain in searches on the

Tangram problem as an SKP. For an ODP, the iteration continues but requires

container extension, which should be taken into account in the operations count.

3. Non-consistency: for an SKP, this happens for 5% of the iterations. For an ODP,

the iteration also continues with container extension.

4. Empty fringe: in practice, it is checked at the beginning of the loop. The fringe

can only be empty once, at which point the search ends.

In the following part, we study the complexity of each process block in the flowchart.

For a given iteration step, we note Z the number of remaining pieces and Θ the average

number of orientations per piece.

1. Pop node: we use a Python heap [29] for which popping has O(n log n) compar-

isons.

2. Domain revision: Unless LCV or Min-DA is used, domain revision occurs after

a node is popped to prepare the coming Empty Domain test. During domain

revision, we reduce the domains of each remaining piece, for each allowed orienta-

tion, following the iterative CFR formula 3.1. This makes ZΘ times the following

operations:

• 1 PWB translation, because in the term NFP(Pk+1, P ) of formula 3.1, Pk+1

has already been placed so we must use equation 2.3 to obtain the NFP with

a translated piece

• 1 PWB difference, composed of 2 polygonal set differences, 2 intersections, 2

unions and 1 closure (equation 4.14)

• 1 CPWB intersection to adapt the CFR to the current container length, as

explained after equation 4.7 (Open Dimension only). It requires 4 polygonal

intersections, 2 unions, 1 regularization.

3. Extend 1 (ODP only): 1 CPWB intersection to adapt the CFR to the new con-

tainer length
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4. Fit region analysis: Algorithm 4 in section 3.5.2 Layout dropping shows that we

need, in the worst case:

• ZΘ PWB translations

• ZΘr polygonal intersections for r the number of free regions

5. Consistency test: complexity depends on the filter used.

• For the dead region analysis: we must compute the sum of the area of all

the living regions and all the remaining pieces. Assuming the area each

piece is precomputed, we need to compute at most r polygonal areas. Other

operations in the analysis are cheap in comparison.

• For the area knapsack analysis: the complexity comes from the 1D Knapsack

subproblem, also solved with a constrained graph search. The number of

nodes to explore depends on the situation. There at most (r+ 1)Z partial as-

signments possible, but in average we can expect (r+1)Z/r assignments to be

valid. In addition, all operations are additions, subtractions or comparisons,

hence each iteration is cheap.

6. Extend 2 (ODP only): 1 CPWB intersection to adapt the CFR to the new con-

tainer length

7. Expand: ZΘd node expansions, where d is the average number of vertices per

translation domain. In one expansion, a node is cloned and a new assignment is

added, but computations are minimized by using shallow clones for geometrical

data. If a heuristic that requires to know placement domains early such as LCV

is used, domain revision (step 2) is applied for each expanded node, hence ZΘd

times. In this case, domain revision will not be applied again on the next step 2.

In our SKP searches, 10% of the iterations are completed until node expansion, and

in our ODP searches, in average, 20% of the iterations are complete. Assuming their

is no container extension and we use a fit region analysis but no advanced heuristic

such as LCV, the total operations are: O(n log n) comparisons, 2ZΘ translations, 2ZΘ

differences, ZΘ(r + 2) + 4 intersections, 2ZΘ + 2 unions, ZΘ + 1 closures, 1 interior.

Differences, intersections and unions are the most expensive, so we can consider a com-

plexity of O(ZΘ) polygonal set operations, with a factor in the order of the number
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of free regions for the current layout. The factor would be 6 without the free region

analysis, but can go up to 18 with two container extensions. If LCV or the Minimum

dead area heuristic is used, domain revision occurs during step 7 and the complexity

becomes O(Z2Θ2d) because it is multiplied by the branching factor ZΘd, which is in

the order of 100 for the Tangram problem, 1000 for the Shirts problem.

The complexity of each operation depends on the number of vertices of the pieces, NFPs,

IFPs and CFRs, which is not easy to predict.

Operations count

To complete the analysis of the theoretical complexity, we provide the actual count of

polygonal operations for the searches we have done on the different benchmarks. Table

5.6 shows the number of iterations and the number of expanded nodes in the second

column, and the average number of operations per node expanded in the other columns.

The most common PWB operation, IFP \NFP , is shown in the third column. Following

columns show the count for elementary polygonal operations (intersection, union, dif-

ference and translation), either applied as part of a PWB operation or elsewhere. The

search parameters are similar to those that provided the best results in sections 5.2.2

Tangram problem and 5.2.3 Results, although they slightly differ for some benchmarks.

In addition, we stopped the search shortly after finding the best solution this time. The

NFP precomputation phase is included in the count, but should be negligible compared

to runtime operations.

We also provide the average time of a single operation in milliseconds for each benchmark

in Table 5.7. The computation times are machine-dependent but allow us to compare the

difficulty of each benchmark and the time of the different operations. The total number

of vertices among all the pieces is also displayed, to give an idea on the complexity of

each data set.

Note that the intersection, union and difference operations require approximately the

same amount of time with the Shapely package, whereas translations take more time.

We expected translations to be cheaper, and we suppose that the slow down is due to

the implementation of the translation operation. Indeed, the translation of a collection
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Table 5.6: Average number of operations per node expanded for each benchmark

Data set Iter./Exp. IFP \ NFP Inter Union Diff Transla

Tangram (SKP) 127/18 101 800 529 233 273

Tangram (ODP) 47/13 613 3922 2585 1251 1317

Albano 1000/160 129 2323 976 322 720

Dagli 31/30 586 7130 3731 1307 1791

Dighe1 314/97 37 366 204 87 148

Dighe2 5026/1342 13 280 115 37 112

Fu 13/12 22 438 253 90 322

Jakobs1 200/33 92 2918 4078 2432 1264

Jakobs2 1500/224 53 1471 869 411 614

Shapes2 30/28 3491 40494 21076 7168 10561

Shirts 100/99 98 1250 715 256 1675

Table 5.7: Average time per operation for each benchmark, in milliseconds

Data set Total vertices IFP \ NFP Inter/Union/Diff Translations

Tangram (SKP) 23 0.67 0.08 0.25

Tangram (ODP) 23 1.27 0.13 0.24

Albano 164 2.83 0.34 0.97

Dagli 186 1.82 0.24 0.78

Dighe1 62 1.48 0.21 0.44

Dighe2 47 1.41 0.16 0.40

Fu 43 1.44 0.16 0.35

Jakobs1 150 0.47 0.24 0.47

Jakobs2 134 3.19 0.30 0.61

Shapes2 176 2.11 0.28 0.74

Shirts 599 5.20 0.74 0.43
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of objects is written as a pure Python recursion in Shapely, whereas other operations

delegate calls to the dynamic library GEOS.



Chapter 6

Conclusion

6.1 Conclusion

We built a generic framework to apply methods specific to constrained problems inside a

classical graph search. To use this framework for the two-dimensional irregular packing

problem, we used value pickers to discretize the problem and we designed heuristics and

filtering techniques based on the analysis of placement domains, introducing the concept

of free and fit regions.

Picker We introduced a few placement picking strategies. Pickers based on domain

shape resulted in average but stable results, whereas evaluation-based pickers were very

effective on a few benchmarks but were too restrictive on most of them. Nevertheless,

placement pickers allowed us to reduce the memory footprint and make searches faster.

Heuristics Our search heuristics are decomposed in three steps: depth-first search,

heuristics that depend on the variable to assign and heuristics that depend on the value to

assign. The variable-based heuristic Minimum Remaining Values proved more effective

than the classic approach to place bigger pieces first, while remaining cheap to compute.

Most of our value-based heuristics work well when piece shapes fit well together, but fail

in problems containing many round or square pieces.

76
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Filter In Single Knapsack instances of the packing problem, the filtering techniques

we presented considerably reduced the number of nodes expanded, compared to basic

Forward Checking. In Open Dimension instances, filtering takes the role of computing

how much length extension is required to continue the search when a layout is not

consistent, and allows us to safely search as if the container length was fixed the rest of

the time. However, since filtering reduces memory usage and is essentially a tool that

optimizes performance. Nevertheless, filtering can indirectly help to find better solutions,

since the freed computation time and memory can be allocated to the exploration of more

layouts.

6.2 Discussion

We encountered many limitations when applying our method to the Tangram testbed

and to the benchmarks of the ESICUP. Some can be addressed by improving the picker,

heuristic and filtering modules, and some improvements require changes in the search

framework itself.

Firstly, the concept of graph search itself is to generate new successors from each explored

node and to score each of them. As the packing problem deals with continuous domains,

we had to discretize it by picking placements on the domain boundary. However, picking

only vertices from the boundary is limited and picking points spaced with a small interval

often produces too many successors. In addition, picking to maximize an evaluation

criterion is also too restrictive, as positions in second rank are completely ignored. A

more flexible approach would be to define potential positions to pick, and then to pick

a reasonable number of positions among them based on a few evaluation criteria and

some randomization.

Secondly, we have systematically used depth-first a the highest priority heuristic in our

searches. Because of this, our searches were often trapped in branches with low quality

layouts and backtracked very slowly, almost canceling the benefits of variable-based and

value-based heuristics. To counter this phenomenon, we have experimented more diverse

searches by distributing nodes between multiple fringes, but each branch eventually got

trapped in a series of similar layouts. Again, we suggest to use more randomization in

the search, distributing nodes between fringes based on their heuristic values, so that
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each fringe receives a mix of good and bad layouts rather than only the best or the

worst. Alternatively, we could use mixed heuristics instead of ordered heuristics, by

combining the different kinds of sub-heuristics in one expression, using for instance a

weighted sum. However, our experiments with mixed heuristics showed that, without a

good normalization coefficient to set all the sub-heuristics at the same level, the result

of the comparisons of the mixed heuristic only depends on one sub-heuristic.

Thirdly, we designed two value-based heuristics that are based on the placement domains

of the remaining pieces: the Least Constraining Value and the Minimum dead area. They

were very effective when combined with restricted placement pickers and the Minimum

Remaining Values heuristic, but difficult to use with benchmarks of big size because they

require to compute many placement domains early. Doing so multiplies the computation

cost by the branching factor of the graph, which is around 100 for a problem as small

as the Tangram. We suggest to use lazy heuristic evaluation to address this issue. In

our approach, we only used lazy evaluation when caching geometries, but the method is

applicable to heuristics as well. The main idea is that we do not need to know all the

heuristics of all nodes in the fringe in the detail. For ordered heuristics in particular,

heuristics are compared one by one, by decreasing priority. Since most of our heuristics

use the depth → variable → value priority system, it is not necessary to compute value-

based heuristics such as LCV unless the best nodes in the fringe have the same depth

and the same variable heuristic values, which only happens for a few nodes at each step

of the search.

Finally, there are many aspects of space analysis that are yet to be used for filtering.

In our approach we could only study isolated regions composing the free space in the

container. By studying spatial properties such as the set of positions covered by the

geometry of a piece when it is moving inside its collision-free region, it would be possible

to detect unreachable parts of the free space even when they are not separated from

other regions. Geometrical operations such as Minkowski sums, until now used only in

the preprocessing step of no-fit polygon computation, could be efficiently used for this

purpose.
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Benchmarks

A.1 ESICUP data sets XML errata

polyXX.xml In poly1a.xml, poly2b.xml, poly3b.xml, poly4b.xml and poly5b.xml,

in the <nfps> section, the IDs of the polygons for which NFPs are defined are incorrectly

offset by -1. The polygons used for the piece shapes starts at index 1 but the NFPs

are written for polygons starting at index 0. polygon0 is only used for the rectangular

container so this cannot be correct, and all indices should be increased. We did not use

those data sets in our benchmarks.

shirts.xml The quantity of piece4 is 1 in the XML file but the PDF and TXT files

state that it should be 15. In our benchmarking tests we fixed the quantity to 15. Note

that the piece IDs in the XML are often offset by -1 compared to the PDF. Consequently,

what is called piece4 in the XML is actually PIECE 5 is the PDF. In addition, a few

NFPs have only 2 vertices, which means some NFPs are reduced to a line. However, by

looking at the shape of the pieces, there does not seem to be any exact fit/slide positions,

therefore we believe that some of the NFPs defined in the XML file are incorrect. We

computed the NFPs ourselves during the precomputation phase.

jakobs1.xml The XML defines an NFP with only 2 vertices for pieces 1 and 8 but

those pieces do not have any exact slide positions, as in shirts.xml. We recomputed

the NFPs in the precomputation phase.
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jakobs2.xml In this benchmark pieces 8 and 17 can fit with an exact slide. Therefore

NFP(17, 8) contains degenerated lines, visible on the left of Figure A.1. The NFP pro-

vided by the XML file represents the degenerated line by an edge that goes backward

onto itself in nfpPolygon6531. Although this is a legitimate representation, some ge-

ometrical libraries do not support self-intersecting edges. Therefore it is impossible to

parse the XML to obtain valid NFP geometries, without using some extra processing to

handle degenerated edges. For an XML format that supports both degenerated edges

and vertices, see Appendix A.2. Alternatively, after parsing the XML file, we could

apply extra processing by resolving self-intersections in the NFP and producing valid

lines instead, as we would with the orbital sliding approach of Burke et al. [14].

Other data sets We experimented issues with the NFPs provided by other data sets

such as Fu, Mao, Marques and Swim: the pieces were overlapping in the final layouts,

which means that the reconstructed NFPs were incorrect. However, we have not con-

firmed whether the error lied in NFP data of the XML or in our parser and reconstruction

algorithm. Nevertheless, we obtained valid layouts for Dighe1 and Dighe2, which means

that our parser worked at least for those data sets.
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Figure A.1: NFP of piece 17 (angle 90°) vs piece 8 (angle 270°) in Jakobs2
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A.2 New NestingXML for degenerated no-fit polygons

In order to store NFPs with degenerated edges, we propose a few improvements to the

current NestingXML. Those suggestions should be considered carefully and adapted to

the needs of other researchers because they can break compatibility with the previous

format. Obviously, parsers can be programmed so that they can handle both the original

and the new format.

First, it is noteworthy that polygons in NestingXML have no holes; they only have an

exterior boundary. Instead, a piece with a hole is composed of two polygons: a positive

polygon (type=1 in the componentType element) to indicate the exterior and a negative

polygon (type=-1) for the hole. To compute the NFP of a piece with another piece

that contains a hole, we can use equation (4.13). If a piece is composed of multiple

separated polygons, although rare, we can apply the NFP union formula 2.7. This

means we can recompose the NFP between 2 pieces composed of multiple polygons.

However, in practice, the objective of storing precomputation results is to reduce the

amount of computation, so we propose to store the geometries of the NFPs between two

pieces instead of 2 polygons. In this manner, a parser can immediately retrieve data on

NFP(P,Q) and the only computations required would be the actual construction of the

geometry from this data.

We replace the elements staticPolygon and orbitingPolygon in nfpType in the orig-

inal NestingXML:

1 <xs:complexType name="nfpType">

2 <xs:sequence >

3 <xs:element name="staticPolygon" type="nfpPolygonType"

minOccurs="1" maxOccurs="1" />

4 <xs:element name="orbitingPolygon" type="nfpPolygonType"

minOccurs="1" maxOccurs="1" />

5 <xs:element name="resultingPolygon" minOccurs="1"

maxOccurs="1">

6 <xs:complexType >

7 <xs:attribute name="idPolygon" type="xs:IDREF" />

8 </xs:complexType >

9 </xs:element >

10 </xs:sequence >
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11 </xs:complexType >

Listing A.1: Original NestingXML nfpType

with the elements staticPiece and orbitingPiece:

1 <xs:complexType name="nfpType">

2 <xs:sequence >

3 <xs:element name="staticPiece" type="nfpPieceType"

minOccurs="1" maxOccurs="1" />

4 <xs:element name="orbitingPiece" type="nfpPieceType"

minOccurs="1" maxOccurs="1" />

5 <xs:element name="resultingPolygonWithBoundary" minOccurs

="1" maxOccurs="1">

6 <xs:complexType >

7 <xs:sequence >

8 <xs:element name="component" type="componentType

" minOccurs="0" maxOccurs="unbounded" />

9 <xs:element name="boundaryComponent" type="

boundaryComponentType" minOccurs="0" maxOccurs="unbounded"

/>

10 </xs:sequence >

11 </xs:complexType >

12 </xs:element >

13 </xs:sequence >

14 </xs:complexType >

Listing A.2: New NestingXML nfpType

where nfpPieceType is similar to nfpPolygonType, but is linked to a piece ID:

1 <xs:complexType name="nfpPieceType">

2 <xs:attribute name="idPiece" type="xs:IDREF" />

3 <xs:attribute name="angle" type="xs:decimal" />

4 <xs:attribute name="mirror" type="mirrorType" />

5 </xs:complexType >

Listing A.3: New NestingXML nfpPieceType

In addition, we have changed resultingPolygon to resultingPolygonWithBoundary

in order to store degenerated edges and vertices similarly to our Polygon with Boundary
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model, described in section 4.3 Non-manifold geometry. For IFPs, we store additive

boundaries, and for NFPs, we store subtractive boundaries. To have lighter XML files,

it is also possible not to store the natural boundary, i.e. the boundary of the regularized

set, and to generate it later instead.

The regularized set of resultingPolygonWithBoundary is represented by positive and

negative polygons with componentTypes, exactly as a piece is represented in the original

NestingXML. We have simply factorized the type as a shared complex type instead of a

nested type:

1 <xs:complexType name="componentType">

2 <xs:attribute name="type" type="xs:integer" />

3 <xs:attribute name="idPolygon" type="xs:IDREF" />

4 <xs:attribute name="xOffset" type="xs:decimal" />

5 <xs:attribute name="yOffset" type="xs:decimal" />

6 </xs:complexType >

Listing A.4: NestingXML componentType

Therefore, a resultingPolygonWithBoundary can have zero, one or more componentType

children to represent its regularized set. If it has 0 such components, it is entirely com-

posed of degenerated edges and vertices.

In addition, resultingPolygonWithBoundary has boundaryComponentType children to

represent its degenerated parts. A boundaryComponentType can itself contains refer-

ences to multiple edges and vertices, therefore only one boundaryComponentType child

is enough to define any degeneracies in an NFP.

The degenerated edges and vertices are stored as follows:

• A boundaryComponentType contains a reference to a boundaryType.

• A boundaryType refers to zero, one or multiple LinesType (present in the original

NestingXML), that represent degenerated edges, and PointsType, that represent

degenerated vertices.

1 <xs:complexType name="boundaryComponentType">

2 <xs:attribute name="idBoundary" type="xs:IDREF" />

3 <xs:attribute name="xOffset" type="xs:decimal" />
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4 <xs:attribute name="yOffset" type="xs:decimal" />

5 </xs:complexType >

6

7 <xs:complexType name="boundaryType">

8 <xs:sequence >

9 <xs:element name="lines" type="LinesType" minOccurs="0"

maxOccurs="1" />

10 <xs:element name="points" type="PointsType" minOccurs="0"

maxOccurs="1" />

11 <xs:element name="xMin" type="xs:decimal" minOccurs="0"

maxOccurs="1" />

12 <xs:element name="xMax" type="xs:decimal" minOccurs="0"

maxOccurs="1" />

13 <xs:element name="yMin" type="xs:decimal" minOccurs="0"

maxOccurs="1" />

14 <xs:element name="yMax" type="xs:decimal" minOccurs="0"

maxOccurs="1" />

15 <xs:element name="perimeter" type="xs:decimal" minOccurs=

"0" maxOccurs="1" />

16 </xs:sequence >

17 <xs:attribute name="id" type="xs:ID" />

18 </xs:complexType >

19

20 <xs:complexType name="PointsType">

21 <xs:choice minOccurs="1" maxOccurs="unbounded">

22 <xs:element name="point">

23 <xs:complexType >

24 <xs:attribute name="n" type="xs:integer" />

25 <xs:attribute name="x0" type="xs:decimal" />

26 <xs:attribute name="y0" type="xs:decimal" />

27 </xs:complexType >

28 </xs:element >

29 </xs:choice >

30 </xs:complexType >

Listing A.5: New NestingXML boundary-related types
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Once the content of LinesType and PointsType elements have been defined, it is possible

to define the additive/subtractive boundary of any IFP/NFP respectively.

The complete XSD file can be found at https://github.com/hsandt/hipps under the

name nesting degenerated.xsd. The XSD file for the original NestingXML can be

downloaded from the ESICUP [19] or at the same address as above, under the name

nesting.xsd.

https://github.com/hsandt/hipps
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Figure B.1: Application GUI
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Figure B.2: Plotting the next piece (right subplot) and its domain for an orientation
of -90° in light blue (left subplot). The blue circle on the left indicates a degenerated

(additive) vertex.
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